
DeepRetrieval: Hacking Real Search Engines and Retrievers with 
Large Language Models via Reinforcement Learning

Pengcheng Jiang*, Jiacheng Lin*, Lang Cao*, Runchu Tian, SeongKu Kang, Zifeng Wang, 
Jimeng Sun, and Jiawei Han

University of Illinois Urbana-Champaign

Background DeepRetrieval Framework

Please augment the following 
user query to retrieve the 
most relevant documents: 

{User’s Query}

LLM
<think>
Let’s augment this query.
…
</think>

<answer>
Here’s the query:
{Augmented Query}
</answer>

Final Reward
Format Reward:         /
{Retrieval Reward}
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• Information retrieval systems often struggle with the semantic gap 
between user queries and relevant documents. 

• Query Augmentation bridges this gap by reformulating queries to better 
match relevant content:

• Costly and highly rely on the quality of reference query (often suboptimal)

Previous Approaches (Distillation from Larger LLMs):

Inspired by DeepSeek-R1, we introduce DeepRetrieval

DeepRetrieval discovers optimal query patterns through direct interaction with retrieval systems

Query Generation & Retrieval:
• Input: User query enters the system
• Reasoning: Model first thinks through augmentation strategy in <think> tags
• Output: Model provides final augmented query in <answer> tags
• Retrieval: Search system executes query and retrieves documents

Reward Optimization:
• Format reward ensures adherence to required output structure
• Retrieval reward directly measures search effectiveness (recall, NDCG, etc.)

Task 1: Real Search Engines
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Task 2: Evidence-Seeking Retrieval

Task 3: SQL Search Task 4: Classic IR

DeepRetrieval-3B’s 65.07% vs. 
Previous SOTA (SFT)’s 24.68%
on PubMed Search API
(Measured by Recall@3K)

Evidence-Seeking Retrieval: Given a question, looking for the 
answer span in the retrieved documents. Measured by Hits@N. The 
shadowed barchart and piechart shows the performance gain by 
knowledge injection and injection ratio.

Our DeepRetrieval-3B ahieves comparable performance to GPT-
4o/Claude-3.5 on NQ and TriviaQA, and outperfroms them on SQuAD.
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DeepRetrieval outperforms leading industry models GPT-4o and Claude-3.5-
Sonnet on
1. SQL Search (BIRD and Spider): Given a user query in text, do text-to-SQL 

generation, and execute the SQL to search DB. Measured by execution 
accuracy (answer exact match).

2. Classic Sparse/Dense Text Retrieval: Query rewriting and retrieve text from 
corpus using BM25 / dense retriever. Measured by NDCG@10.

Main Results (find full tables in our paper) Discussions & Takeaways

Think/Query Length Study

Reasoning Evolution: Unlike tasks 
requiring long reasoning chains, 
reasoning length decreases over time as 
models internalize effective strategies

Different Strategies leading to similar 
performance: Models discover distinct 
approaches (Qwen favors longer 
queries, LLaMA produces shorter ones), 
yet achieve comparable recall (~65%) - 
demonstrating multiple valid paths to 
high performance

Without Reasoning: Models fall into 
local minima of query verbosity (yellow 
line) with lower performance (~52% vs 
~65% recall)

Key Finding: Thinking phase is crucial 
for exploration during training but 
becomes more efficient as model learns 
optimal patterns

Why RL >> SFT?

• Direct Optimization: RL optimizes retrieval 
metrics directly rather than mimicking reference 
queries

• Exploration Advantage: RL explores query space 
through trial-and-error, discovering patterns human 
experts might miss 

 For example:

• Task Adaptability: RL performs consistently well 
across scenarios with varying levels of ground 
truth availability

They are also complementary : SFT can provide 
strong initialization for RL when model lacks domain 
capabilities (SQL coding)

((Total Knee Arthroplasty Trial OR Total Knee 
Arthroplasty Surgery) AND (Drainage OR 
Antibiotics Trial OR Surgical Drainage Trial 
OR Postoperative Drains Trial))

BM25 Renaissance for Classic IR

• BM25+DeepRetrieval combines the efficiency of sparse 
retrieval with performance that matches or exceeds 
dense methods. 

• Our experiments show 34× faster runtime while achieving 
better accuracy on MS MARCO domain-specific 
collections.

More Questions?

Feel free to reach out Patrick Jiang (pj20@illinois.edu) if 
you have further questions & discussions!
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