
DeepRetrieval: Hacking Real Search Engines and Retrievers with
Large Language Models via Reinforcement Learning

Pengcheng Jiang*, Jiacheng Lin*, Lang Cao*, Runchu Tian, SeongKu Kang, Zifeng Wang,
Jimeng Sun, and Jiawei Han

University of Illinois Urbana-Champaign

Background DeepRetrieval Framework

Please augment the following
user query to retrieve the
most relevant documents:

{User’s Query}

LLM
<think>
Let’s augment this query.
…
</think>

<answer>
Here’s the query:
{Augmented Query}
</answer>

Final Reward
Format Reward: /
{Retrieval Reward}

update

Input

Output

Reasoning

Retrieval
(Search)

Retrieval Reward
Computation

True Context

Retrieved Context

LLMUser’s Query

Query
Augmentation

Augmented Query
Retrieve

Text data

Larger LLMUser’s Query

Augmented Query 1

Augmented Query 2

Augmented Query !
(e.g., GPT-4o) ⋮

Retrieve

Retrieve

Retrieve

⋯
⋯
⋯

Recall

Recall

0.2

0.7

0.4
Recall

⋮

LLMUser’s Query

Query
Augmentation

Augmented Query

Reference Query

SFT

• Information retrieval systems often struggle with the semantic gap
between user queries and relevant documents.

• Query Augmentation bridges this gap by reformulating queries to better
match relevant content:

• Costly and highly rely on the quality of reference query (often suboptimal)

Previous Approaches (Distillation from Larger LLMs):

Inspired by DeepSeek-R1, we introduce DeepRetrieval

DeepRetrieval discovers optimal query patterns through direct interaction with retrieval systems

Query Generation & Retrieval:
• Input: User query enters the system
• Reasoning: Model first thinks through augmentation strategy in <think> tags
• Output: Model provides final augmented query in <answer> tags
• Retrieval: Search system executes query and retrieves documents

Reward Optimization:
• Format reward ensures adherence to required output structure
• Retrieval reward directly measures search effectiveness (recall, NDCG, etc.)

Task 1: Real Search Engines

0 20 40 60 80

GPT-3.5

Haiku-3

GPT-4o

Sonnet-3.5

LEADS

DeepRetrieval

Trial Registry Publication

Task 2: Evidence-Seeking Retrieval

Task 3: SQL Search Task 4: Classic IR

DeepRetrieval-3B’s 65.07% vs.
Previous SOTA (SFT)’s 24.68%
on PubMed Search API
(Measured by Recall@3K)

Evidence-Seeking Retrieval: Given a question, looking for the
answer span in the retrieved documents. Measured by Hits@N. The
shadowed barchart and piechart shows the performance gain by
knowledge injection and injection ratio.

Our DeepRetrieval-3B ahieves comparable performance to GPT-
4o/Claude-3.5 on NQ and TriviaQA, and outperfroms them on SQuAD.

57

63

68

74

65

71

76

82

57

63

68

74

49 54 59 64

49

55

62

68

26

29

32

35

19

24

30

35

24

30

36

42

36

42

49

55

37434854

41

46

52

57

58

64

70

76

NQ

TriviaQA

SQuAD

HotpotQA

FEVER

NFCorpus

MS-H

MS-S

MS-T

MS-BEIR

BIRD

Spider

GPT-3.5
Haiku-3

GPT-4o
Sonnet-3.5

DeepRetrieval

DeepRetrieval outperforms leading industry models GPT-4o and Claude-3.5-
Sonnet on
1. SQL Search (BIRD and Spider): Given a user query in text, do text-to-SQL

generation, and execute the SQL to search DB. Measured by execution
accuracy (answer exact match).

2. Classic Sparse/Dense Text Retrieval: Query rewriting and retrieve text from
corpus using BM25 / dense retriever. Measured by NDCG@10.

Main Results (find full tables in our paper) Discussions & Takeaways

Think/Query Length Study

Reasoning Evolution: Unlike tasks
requiring long reasoning chains,
reasoning length decreases over time as
models internalize effective strategies

Different Strategies leading to similar
performance: Models discover distinct
approaches (Qwen favors longer
queries, LLaMA produces shorter ones),
yet achieve comparable recall (~65%) -
demonstrating multiple valid paths to
high performance

Without Reasoning: Models fall into
local minima of query verbosity (yellow
line) with lower performance (~52% vs
~65% recall)

Key Finding: Thinking phase is crucial
for exploration during training but
becomes more efficient as model learns
optimal patterns

Why RL >> SFT?

• Direct Optimization: RL optimizes retrieval
metrics directly rather than mimicking reference
queries

• Exploration Advantage: RL explores query space
through trial-and-error, discovering patterns human
experts might miss

 For example:

• Task Adaptability: RL performs consistently well
across scenarios with varying levels of ground
truth availability

They are also complementary : SFT can provide
strong initialization for RL when model lacks domain
capabilities (SQL coding)

((Total Knee Arthroplasty Trial OR Total Knee
Arthroplasty Surgery) AND (Drainage OR
Antibiotics Trial OR Surgical Drainage Trial
OR Postoperative Drains Trial))

BM25 Renaissance for Classic IR

• BM25+DeepRetrieval combines the efficiency of sparse
retrieval with performance that matches or exceeds
dense methods.

• Our experiments show 34× faster runtime while achieving
better accuracy on MS MARCO domain-specific
collections.

More Questions?

Feel free to reach out Patrick Jiang (pj20@illinois.edu) if
you have further questions & discussions!

mailto:pj20@illinois.edu

