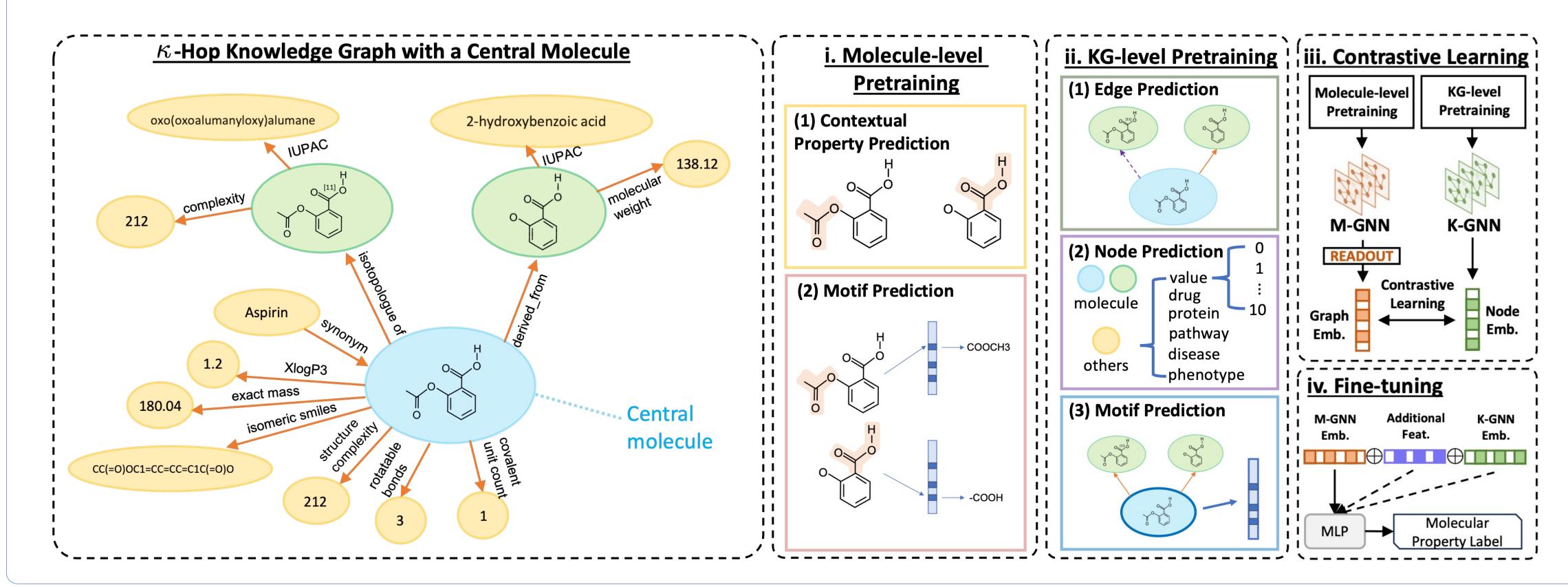


Motivation

Most previous approaches use graph neural networks (GNNs) to only learn the structure information in molecules, to predict molecule's property (e.g., BBBP, toxicity).


However, publicly available biochemical knowlegde bases remained largely unused (e.g., PubChem, PrimeKG) for this task.

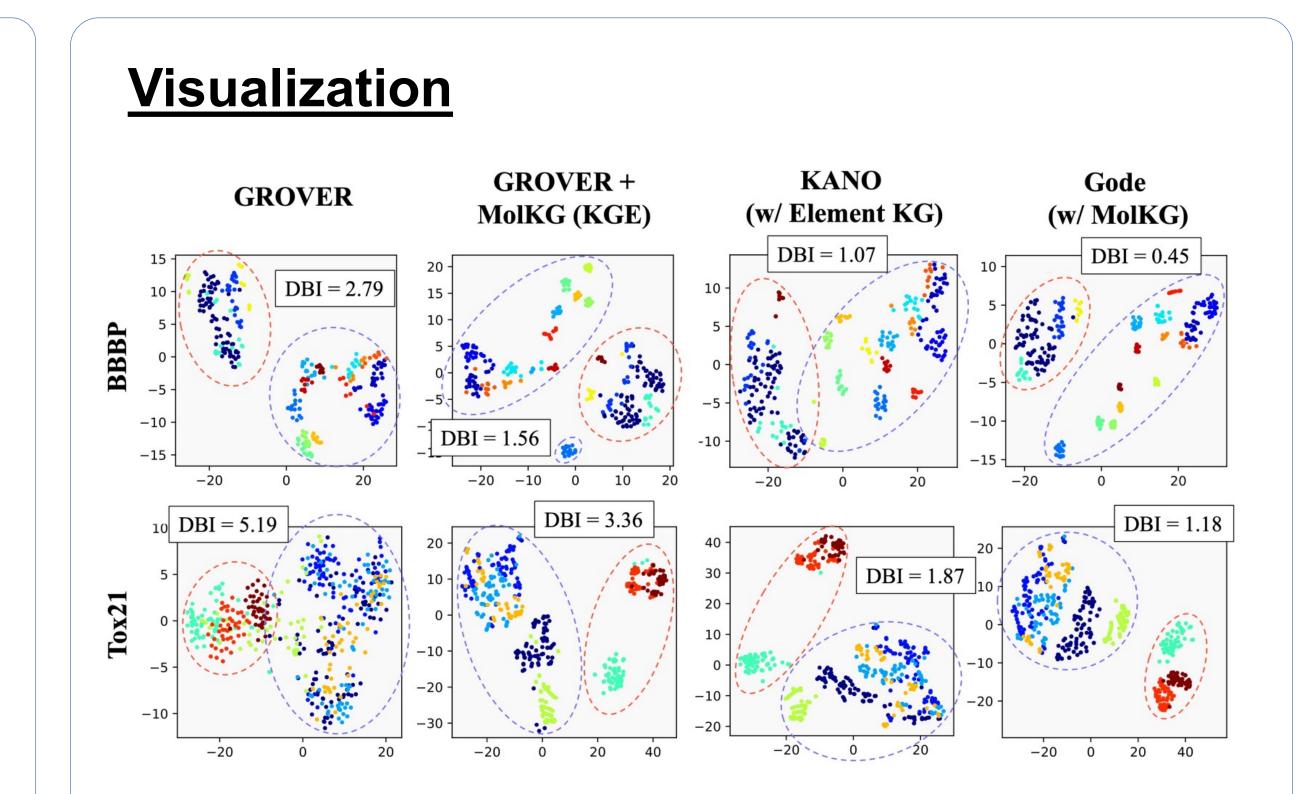
"Can we leverage the available biochemical knowledge for molecular property prediction?"

<u>Method</u>: Gode (Graph as a Node) Framework

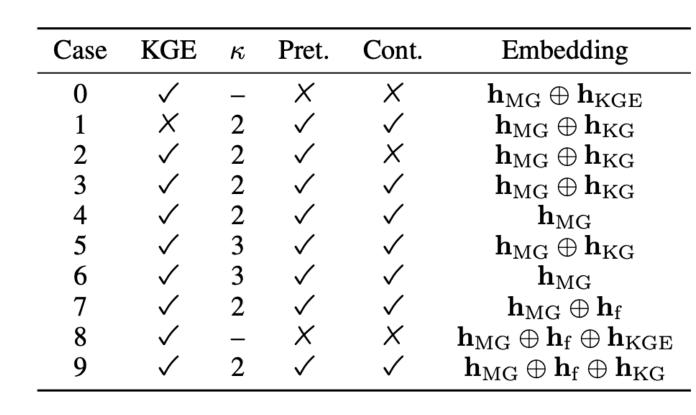
□ We construct MolKG – a molecule-centric biochemical knowledge graph dataset Each molecule corresponds to its central sub-graph in MolKG

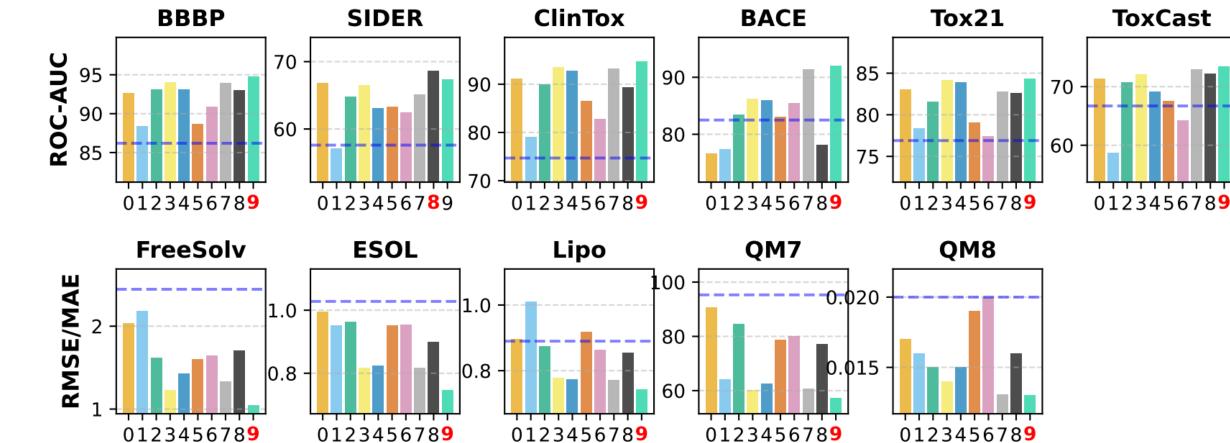
□ We conduct GNN pre-training at two levels: molecule-level and KG-level

At molecule-level, a molecule is a graph At KG-level, a molecule is a node


• We align bi-level molecule representations via contrastive learning

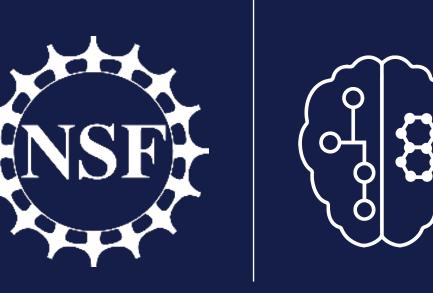
□ The pre-trained and aligned molecule embedding can then be fine-tuned to any downstream tasks


<u>Results</u> across 11 Molecular Property Prediction Tasks:


	Classification (Higher is Better)						Regression (Lower is Better)				
Dataset # Molecules # Tasks	BBBP 2039 1	SIDER 1427 27	ClinTox 1478 2	BACE 1513 1	Tox21 7831 12	ToxCast 8575 617	FreeSolv 642 1	ESOL 1128 1	Lipophilicity 4200 1	QM7 6830 1	QM8 21786 12
GCN GIN SchNet MPNN DMPNN MGCN N-GRAM HU. et.al GROVER _{Large, GTrans} MGSSL MolCLR MolCLR	$ \begin{vmatrix} 71.8 \pm 0.9 \\ 65.8 \pm 4.5 \\ 84.8 \pm 2.2 \\ 91.3 \pm 4.1 \\ 91.9 \pm 3.0 \\ 85.0 \pm 6.4 \\ 91.2 \pm 1.3 \\ 70.8 \pm 1.5 \\ 86.2 \pm 3.9 \\ 70.5 \pm 1.1 \\ 73.3 \pm 1.0 \\ 76.7 \pm 2.2 \end{vmatrix} $	$\begin{array}{c} 53.6 \pm 0.3 \\ 57.3 \pm 1.6 \\ 54.5 \pm 3.8 \\ 59.5 \pm 3.0 \\ 63.2 \pm 2.3 \\ 55.2 \pm 1.8 \\ 63.2 \pm 0.5 \\ 62.7 \pm 0.8 \\ 57.6 \pm 1.6 \\ 64.1 \pm 0.7 \\ 61.2 \pm 3.6 \\ 63.3 \pm 2.5 \end{array}$	$\begin{array}{c} 62.5 \pm 2.8 \\ 58.0 \pm 4.4 \\ 71.7 \pm 4.2 \\ 87.9 \pm 5.4 \\ 89.7 \pm 4.0 \\ 63.4 \pm 4.2 \\ 85.5 \pm 3.7 \\ 72.6 \pm 1.5 \\ 74.7 \pm 4.4 \\ 80.7 \pm 2.1 \\ 89.8 \pm 2.7 \\ 89.3 \pm 3.1 \end{array}$	$71.6 \pm 2.0 70.1 \pm 5.4 76.6 \pm 1.1 81.5 \pm 4.4 85.2 \pm 5.3 73.4 \pm 3.0 87.6 \pm 3.5 84.5 \pm 0.7 82.5 \pm 4.4 79.7 \pm 0.8 82.8 \pm 0.7 87.7 \pm 1.8$	$70.9 \pm 0.3 74.0 \pm 0.8 76.6 \pm 2.5 80.8 \pm 2.4 82.6 \pm 2.3 70.7 \pm 1.6 76.9 \pm 2.7 78.7 \pm 0.4 76.9 \pm 2.3 76.4 \pm 0.4 74.1 \pm 5.3 80.2 \pm 3.2$	$\begin{array}{c} 65.0 \pm 6.1 \\ 66.7 \pm 1.5 \\ 67.9 \pm 2.1 \\ 69.1 \pm 1.3 \\ 71.8 \pm 1.1 \\ 66.3 \pm 0.9 \\ \hline \\ 65.7 \pm 0.6 \\ 66.7 \pm 2.6 \\ 64.1 \pm 0.7 \\ 65.9 \pm 2.1 \\ \hline \\ 70.4 \pm 2.1 \end{array}$	$\begin{array}{c} 2.870 \pm 0.140 \\ 2.765 \pm 0.180 \\ 3.215 \pm 0.755 \\ 1.621 \pm 0.952 \\ 1.673 \pm 0.082 \\ 3.349 \pm 0.097 \\ 2.512 \pm 0.190 \\ 2.764 \pm 0.002 \\ 2.445 \pm 0.761 \\ \end{array}$	$\begin{array}{c} 1.430 \pm 0.050 \\ 1.452 \pm 0.020 \\ 1.045 \pm 0.064 \\ 1.167 \pm 0.430 \\ 1.050 \pm 0.008 \\ 1.266 \pm 0.147 \\ 1.100 \pm 0.160 \\ 1.100 \pm 0.006 \\ 1.028 \pm 0.145 \end{array}$	$\begin{array}{c} 0.712 \pm 0.049 \\ 0.850 \pm 0.071 \\ 0.909 \pm 0.098 \\ \textbf{0.672} \pm \textbf{0.051} \\ 0.683 \pm 0.016 \\ 1.113 \pm 0.041 \\ 0.876 \pm 0.033 \\ 0.739 \pm 0.003 \\ 0.890 \pm 0.050 \end{array}$	$\begin{array}{c} 122.9 \pm 2.2 \\ 124.8 \pm 0.7 \\ 74.2 \pm 6.0 \\ 111.4 \pm 0.9 \\ 103.5 \pm 8.6 \\ 77.6 \pm 4.7 \\ 125.6 \pm 1.5 \\ 113.2 \pm 0.6 \\ 95.3 \pm 5.6 \end{array}$	$\begin{array}{c} 0.037 \pm 0.001 \\ 0.037 \pm 0.001 \\ 0.020 \pm 0.002 \\ \textbf{0.015} \pm \textbf{0.001} \\ \textbf{0.016} \pm \textbf{0.001} \\ \textbf{0.022} \pm 0.002 \\ 0.032 \pm 0.003 \\ 0.022 \pm 0.003 \\ 0.022 \pm 0.001 \\ 0.020 \pm 0.003 \end{array}$
KGE_NFM _{w/MolKG} KANO _{CMPNN} KANO _{GTrans}	$\begin{array}{c c} 92.4 \pm 2.4 \\ \textbf{92.6} \pm \textbf{1.8} \\ \textbf{93.7} \pm \textbf{2.3} \\ \hline \textbf{94.8} \pm \textbf{1.9} \end{array}$	$65.3 \pm 1.4 \\ 65.5 \pm 1.6 \\ 63.8 \pm 1.2 \\ 67.4 \pm 1.4$	87.3 ± 2.0 92.9 \pm 1.1 93.6 \pm 0.7 94.7 \pm 2.9	$78.1 \pm 2.1 \\ 90.7 \pm 3.1 \\ 90.4 \pm 1.5 \\ 92.0 \pm 2.2 \\$	$79.8 \pm 3.3 \\81.8 \pm 1.1 \\81.2 \pm 1.8 \\84.3 \pm 1.2$	$\begin{array}{c} 72.6 \pm 1.8 \\ 72.5 \pm 1.9 \\ 72.5 \pm 1.5 \\ \hline 73.4 \pm 0.9 \end{array}$	$\begin{array}{c} 1.942 \pm 0.441 \\ \textbf{1.320} \pm \textbf{0.244} \\ \textbf{1.443} \pm \textbf{0.315} \\ \hline \textbf{1.048} \pm \textbf{0.314} \end{array}$	$\begin{array}{c} 1.027 \pm 0.201 \\ \textbf{0.902} \pm \textbf{0.104} \\ \textbf{0.914} \pm \textbf{0.092} \\ \textbf{0.746} \pm \textbf{0.128} \end{array}$	0.877 ± 0.071 0.641 \pm 0.012 0.651 \pm 0.018 0.743 \pm 0.043	87.6 ± 3.2 66.5 ± 3.7 63.6 ± 4.1 57.2 ± 3.0	$\begin{array}{c} \textbf{0.016} \pm \textbf{0.001} \\ \textbf{0.013} \pm \textbf{0.001} \\ \textbf{0.013} \pm \textbf{0.002} \\ \textbf{0.013} \pm \textbf{0.001} \end{array}$

 \rightarrow **Gode** achieves state-of-the-art performance on 10/11 tasks, outperforming all the previous baselines (including KANO, which leverages chemical element knowledge)

The learned **Gode** embedding has the most distinct clusters for different scaffolds (shown as different colors). \rightarrow Highest representational power


 \rightarrow We conduct extensive ablation studies to show the effectiveness of each component in Gode.

Future Directions

Applications in Drug Discovery □ Inclusion of Generative Al's power

Paper: https://pat-jj.github.io/assets/pdf/gode.pdf **Code**: https://github.com/pat-jj/Gode

This work was supported by the Molecule Maker Lab Institute: An AI Research Institutes program supported by NSF under Award No.2019897.

MOLECULE MAKER LAB INSTITUTE

Collaborating Institutions

