

# Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval



Pengcheng Jiang<sup>[1]</sup>, Cao Xiao<sup>[2]</sup>, Minhao Jiang<sup>[2]</sup>, Parminder Bhatia<sup>[2]</sup>, Taha Kass-Hout<sup>[2]</sup>, Jimeng Sun<sup>[1]</sup>, Jiawei Han<sup>[1]</sup>

[1]University of Illinois Urbana-Champaign

[2]GE HealthCare

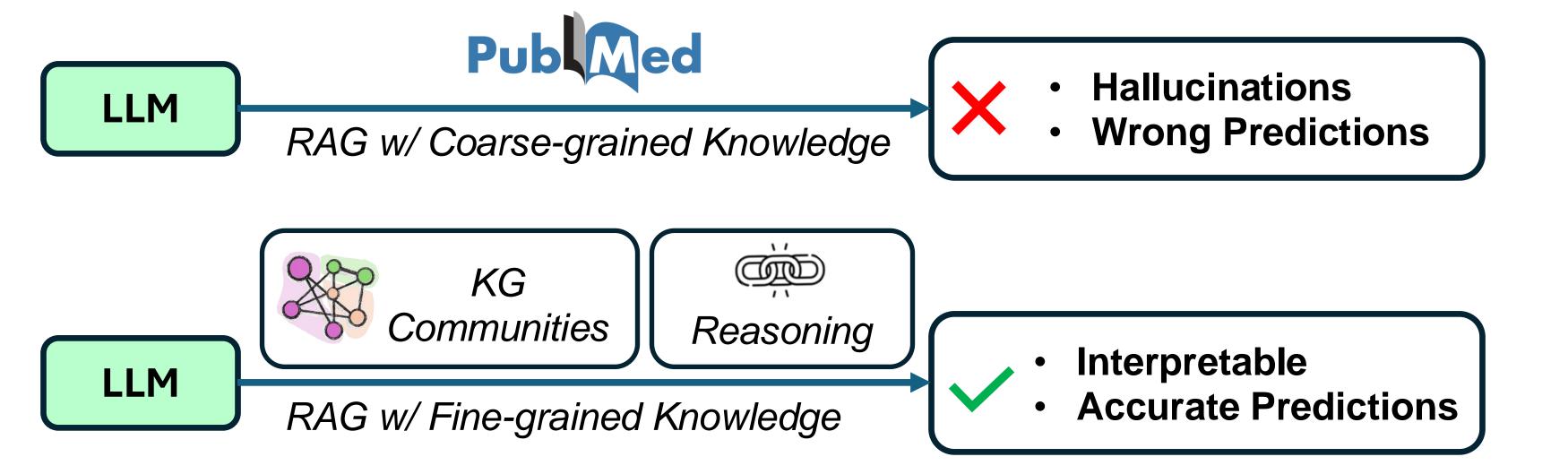
# Paper



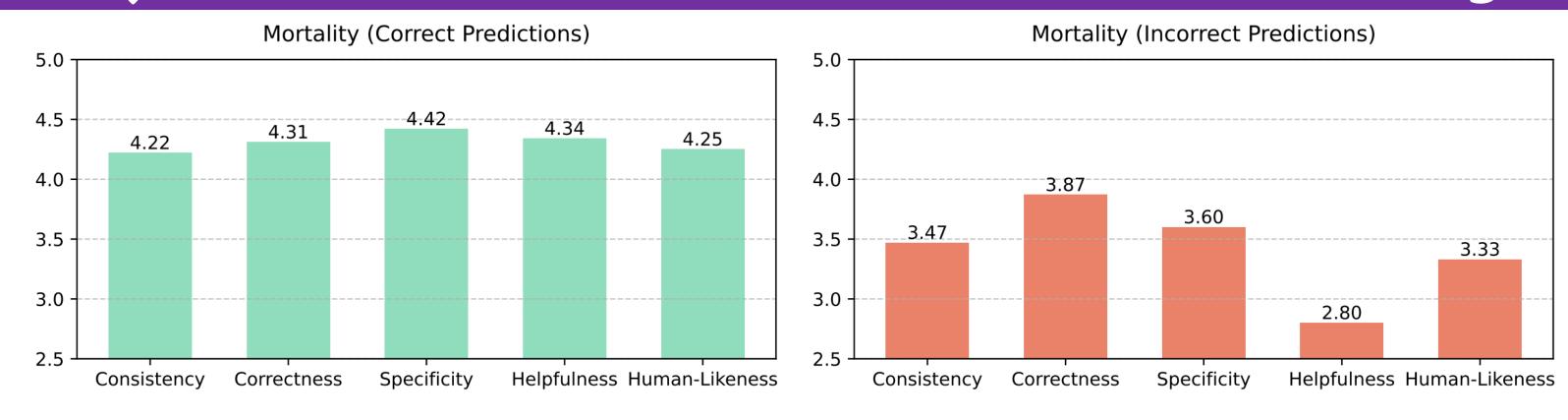


#### Introduction

- Motivation: LLMs hallucinate & struggle in healthcare due to coarsegrained knowledge and irrelevant retrieval.
- Goal: Enhance LLM predictions with fine-grained, context-relevant knowledge via knowledge graphs.
- Solution Overview: Introduce KARE, a framework that integrates hierarchical KG community retrieval and LLM reasoning.
- **Impact**: Up to 15% improvement on mortality and readmission prediction tasks across MIMIC-III/IV.



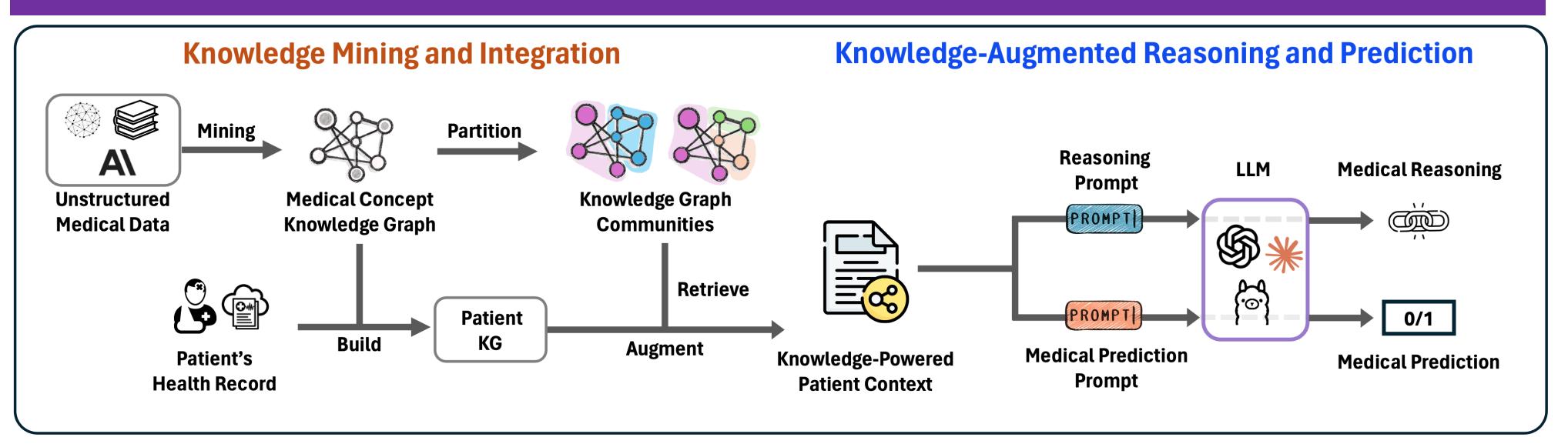
### Expert's Evaluation of KARE's Clinical Reasoning



Correct predictions: High scores in specificity, helpfulness, and correctness. Incorrect predictions: Quality drops, especially in helpfulness (2.80), but reasoning remains moderately consistent and correct.

Insight: KARE generates clinically valuable and interpretable reasoning, even under prediction errors.

#### **KARE Framework**



(Simplified Version for Illustration. Find the complete version in our paper.)

#### **Step 1: KG Construction & Indexing**

ightarrow Build a multi-source medical KG from EHRs, PubMed, and LLM-inferred links ightarrow Cluster semantically similar concepts ightarrow Detect and summarize hierarchical graph communities

#### **Step 2: Patient Context Augmentation**

- → Construct a patient-specific subgraph
- $\rightarrow$  Select relevant community summaries using node hits, coherence, and recency  $\rightarrow$  Dynamically enrich EHR context

#### **Step 3: Reasoning-Enhanced Prediction**

 $\rightarrow$  Use an expert LLM to generate reasoning chains  $\rightarrow$  Fine-tune a smaller LLM with both reasoning and label supervision  $\rightarrow$  Predict outcomes with interpretable, step-by-step rationale

## Ablation Studies on Training Components of KARE

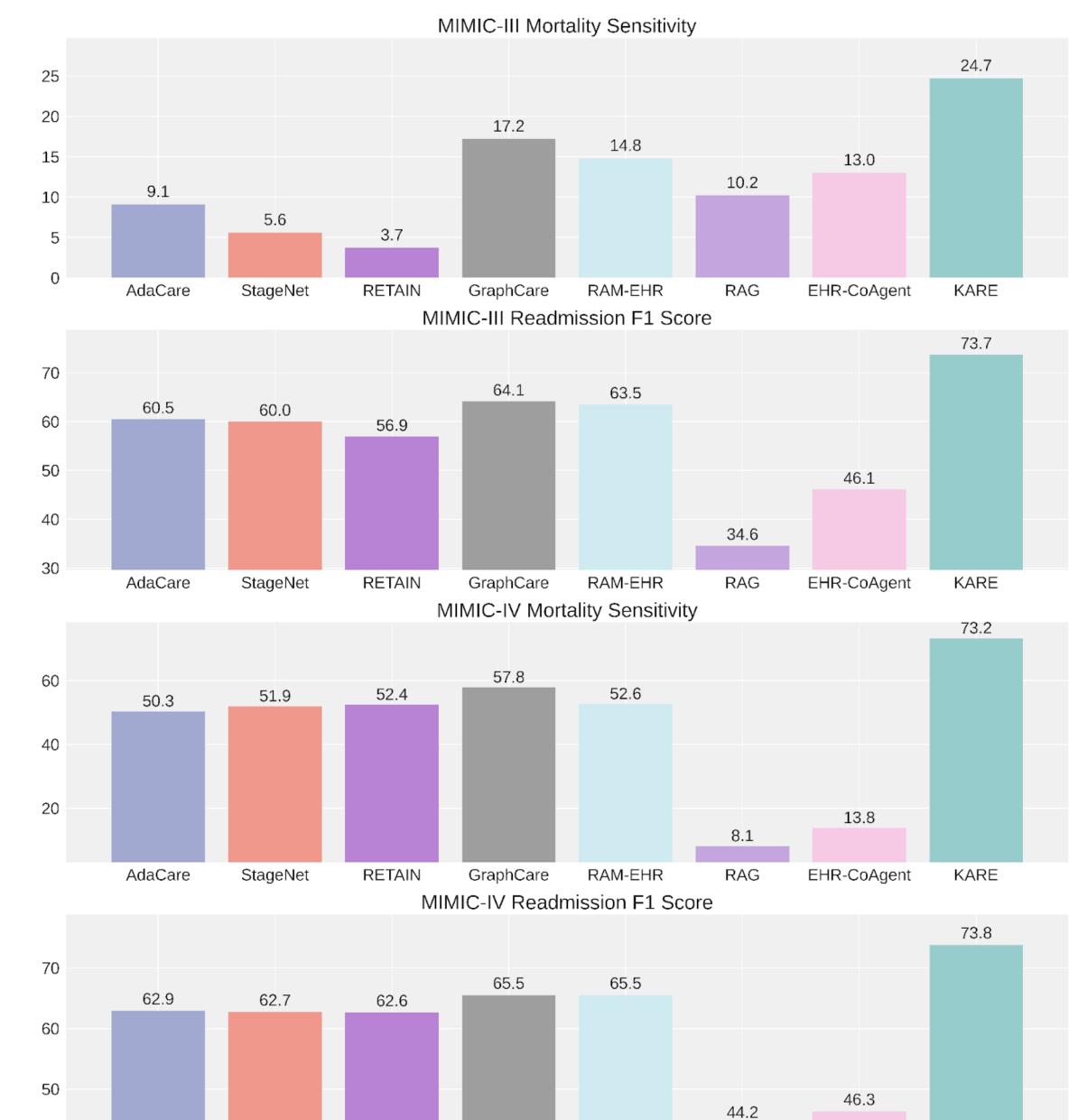
| Similar<br>Patients | Retrieved<br>Knowledge | Reasoning | MIMIC-III-Mortality |                      |                         |                  | <b>MIMIC-III-Readmission</b> |                      |                             |                  |
|---------------------|------------------------|-----------|---------------------|----------------------|-------------------------|------------------|------------------------------|----------------------|-----------------------------|------------------|
|                     |                        |           | Accuracy            | Macro F1             | Sensitivity             | Specificity      | Accuracy                     | Macro F1             | Sensitivity                 | Specificity      |
| X                   | X                      | X         | 90.4                | 53.0                 | 11.4                    | 94.3             | 57.6                         | 57.6                 | 50.5                        | 66.3             |
| X                   | X                      | ✓         | 93.1                | 58.4                 | 15.8                    | 97.5             | 65.5                         | 64.7                 | 62.3                        | 67.7             |
| X                   | <b>✓</b>               | ✓         | 95.3                | 64.6                 | 24.7                    | 98.3             | 72.8                         | 72.6                 | 74.7                        | 70.6             |
| $\checkmark$        | ✓                      | ✓         | 93.6                | 61.3                 | 18.4                    | 98.6             | 73.9                         | 73.7                 | 76.7                        | 70.7             |
|                     |                        |           |                     |                      |                         |                  |                              |                      |                             |                  |
|                     |                        |           |                     |                      |                         |                  |                              |                      |                             |                  |
| Similar             | Retrieved              | Reasoning |                     | MIMIC-I              | V-Mortality             |                  |                              | MIMIC-IV-            | -Readmission                |                  |
| Similar<br>Patients | Retrieved<br>Knowledge | Reasoning | Accuracy            | MIMIC-I              | V-Mortality Sensitivity | Specificity      | Accuracy                     | MIMIC-IV-            | -Readmission<br>Sensitivity | Specificity      |
|                     |                        | Reasoning | Accuracy 92.2       |                      |                         | Specificity 96.2 | Accuracy 56.1                |                      |                             |                  |
| Patients            | Knowledge              |           |                     | Macro F1             | Sensitivity             |                  |                              | Macro F1             | Sensitivity                 | Specificity      |
| <b>Patients</b> X   | Knowledge              |           | 92.2                | <b>Macro F1</b> 83.1 | Sensitivity 65.0        | 96.2             | 56.1                         | <b>Macro F1</b> 46.7 | Sensitivity 23.1            | Specificity 76.2 |

1.Both retrieved knowledge and reasoning chain significantly contribute to the performance gain 2.When the data is imbalanced (MIMIC-III-Mortality), similar patient retrieval hurts the performance

3. Without retrieved knowledge, the LLM could easily encounter the overfitting issue

#### Performance on MIMIC-III/IV

KARE outperforms leading models by a large margin on mortality and readmission prediction tasks:



#### **Future Directions**

- RL-Driven Reasoning Optimization (i.e. R1-like)
- Interactive Clinical Feedback Loop
- Multi-task generalization (e.g., multi-label diagnosis)
- Scalable Community Retrieval

Base w/o reasoning

Email Patrick Jiang (pj20@illinois.edu) for further questions and discussions!