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Introduction

Motivation: LLMs hallucinate & struggle in healthcare due to coarse-
grained knowledge and irrelevant retrieval.

Goal: Enhance LLM predictions with fine-grained, context-relevant
knowledge via knowledge graphs.

Solution Overview: Introduce KARE, a framework that integrates
hierarchical KG community retrieval and LLM reasoning.

Impact: Up to 15% improvement on mortality and readmission prediction
tasks across MIMIC-III/IV.
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Expert’'s Evaluation of KARE's Clinical Reasoning
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Correct predictions: High scores in specificity, helpfulness, and correctness.
Incorrect predictions: Quality drops, especially in helpfulness (2.80), but
reasoning remains moderately consistent and correct.

Insight: KARE generates clinically valuable and interpretable reasoning, even
under prediction errors.

KARE Framework
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(Simplified Version for lllustration. Find the complete version in our paper.)

Step 1: KG Construction & Indexing

— Build a multi-source medical KG from EHRs, PubMed, and LLM-inferred links — Cluster
semantically similar concepts — Detect and summarize hierarchical graph communities

Step 2: Patient Context Augmentation

— Construct a patient-specific subgraph

— Select relevant community summaries using node hits, coherence, and recency — Dynamically
enrich EHR context

Step 3: Reasoning-Enhanced Prediction

— Use an expert LLM to generate reasoning chains — Fine-tune a smaller LLM with both
reasoning and label supervision — Predict outcomes with interpretable, step-by-step rationale

Ablation Studies on Training Components of KARE
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1.Both retrieved knowledge and reasoning chain significantly contribute to the performance gain
2.When the data is imbalanced (MIMIC-IlI-Mortality), similar patient retrieval hurts the performance
3.Without retrieved knowledge, the LLM could easily encounter the overfitting issue

Performance on MIMIC-III/IV

KARE outperforms leading models by a large margin
on mortality and readmission prediction tasks:
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Future Directions

* RL-Driven Reasoning Optimization (i.e. R1-like)
 |nteractive Clinical Feedback Loop

* Multi-task generalization (e.g., multi-label diagnosis)
» Scalable Community Retrieval

Email Patrick Jiang (pj20@illinois.edu) for further
guestions and discussions!
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