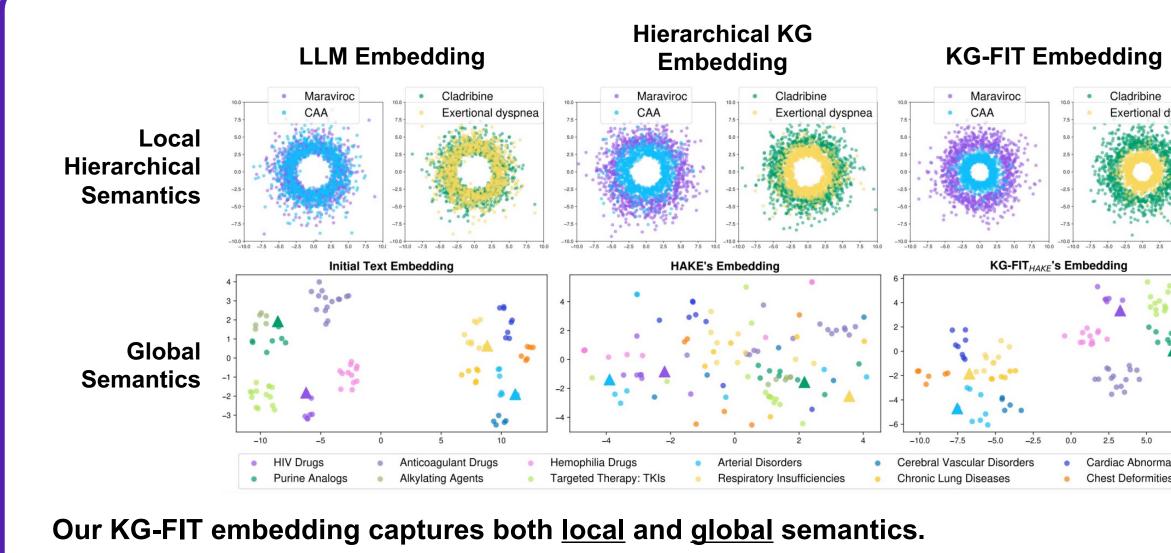

KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge

Pengcheng Jiang, Lang Cao, Cao Xiao, Parminder Bhatia, Jimeng Sun, and Jiawei Han


University of Illinois at Urbana Champaign, GE HealthCare

- No need to fine-tune the language models themselves

Exertional dyspne

Embedding Comparison

In this example, KG-FIT can accurately predict: Local: (1) Maraviroc has drug effect on coronary artery atherosclerosis (CAA), (2) Cladribine has drug effect of exertional dyspnea Global: (1) Maraviroc is a type of HIV drugs, (2) Cladribine is a type of Purine Analog.

							FB15K-237 YAGO3-10								
						PLM-b	ased Em	bedding	g Metho	ods					
Model		PLM	MR	MRR	H@1	H@5	H@10	MR	MRR	H@1	H@5	H@10	MR	MRR	H@1
KG-BERT [22]*		BERT	153	.245	.158	_	.420	_	_	_	_	_	_	_	_
StAR [23]*		RoBERTa	117	.296	.205	_	.482	_	_	_	_	_	_	_	_
PKGC [28]		RoBERTa	184	.342	.236	.441	.525	1225	.501	.426	.596	.660	219	.485	.391
C-LMKE [26]*		BERT	141	.306	.218	_	.484	_	_	_	_	_	_	_	_
KGT5 [25]*		T5	_	.276	.210	_	.414	_	.426	.368	_	.528	_	_	_
KG-S2S [24]*		T5	-	.336	.257	_	.498	_	_	_	_	_	_	_	_
SimKGC [27]		BERT	-	.336	.249	_	.511	_	_	_	_	_	168	.527	.524
CSProm-KG [32]		BERT	-	.358	.269	-	.538	1145	.488	.451	.624	.675	157	.540	.492
LLM Emb. (zero-shot)		TE-3-S	2044	.023	.002	.035	.068	22741	.009	.000	.016	.024	5581	.000	.000
		TE-3-L	1818	.030	.002	.048	.085	18780	.015	.000	.019	.032	4297	.001	.000
			1010				-based E								
									0						
Model	Frame	${\cal H}$	MR	MRR	H@1	H@5	H@10	MR	MRR	H@1	H@5	H@10	MR	MRR	H@1
TransE	Base [14]	_	233	.287	.192	.389	.478	1250	.500	.398	.626	.685	182	.048	.000
	KG-FIT	Seed	142	.345	.242	.457	.547	952	.520	.429	.638	.700	80	.298	.000
		LHR	122	.362	.264	.478	.568	529	.544	.463	.650	.705	69	.334	.000
pRotatE	Base[19]		188	.310	.205	.399	.502	974	.477	.385	.573	.655	118	.491	.399
	KG-FIT	Seed	160	.355	.257	.461	.558	910	.525	.436	.622	.693	75	.635	.538
		LHR	119	.371	.277	.483	.572	829	.550	.464	.648	.710	69	.649	.574
RotatE	Base [19]		190	.333	.241	.428	.528	1620	.495	.402	.550	.670	57	.539	.447
	KG-FIT	Seed	141	.354	.261	.464	.555	790	.529	.440	.643	.708	46	.622	.517
		LHR	120	.369	.274	.488	.555	744	.563	.475	.658	.700	34	.645	.532
HAKE	Base [20]		184	.344	.247	.435	.538	1220	530	.431	.634	.681	95	.595	.515
	KG-FIT	Seed	162	.358	.268	.470	.563	854	.541	.455	.647	.703	82	.638	.540
		LHR	137	.338 .362	.208 .275	.470 .485	.303 .572	834 810	.541 .568	.433 . 474	.047 .662	.703 .718	42	.038 .682	.540 .605

Key Findings:

(1) KG-FIT significantly outperforms SOTA PLM- and structure-based methods (2) Performance gain by LHR (LLM-guided hierarchy refinement) is huge Suggesting the importance of high-quality hierarchical knowledge of entities

KG-FIT framework includes the following steps:

Step 1: Entity Embedding Initialization

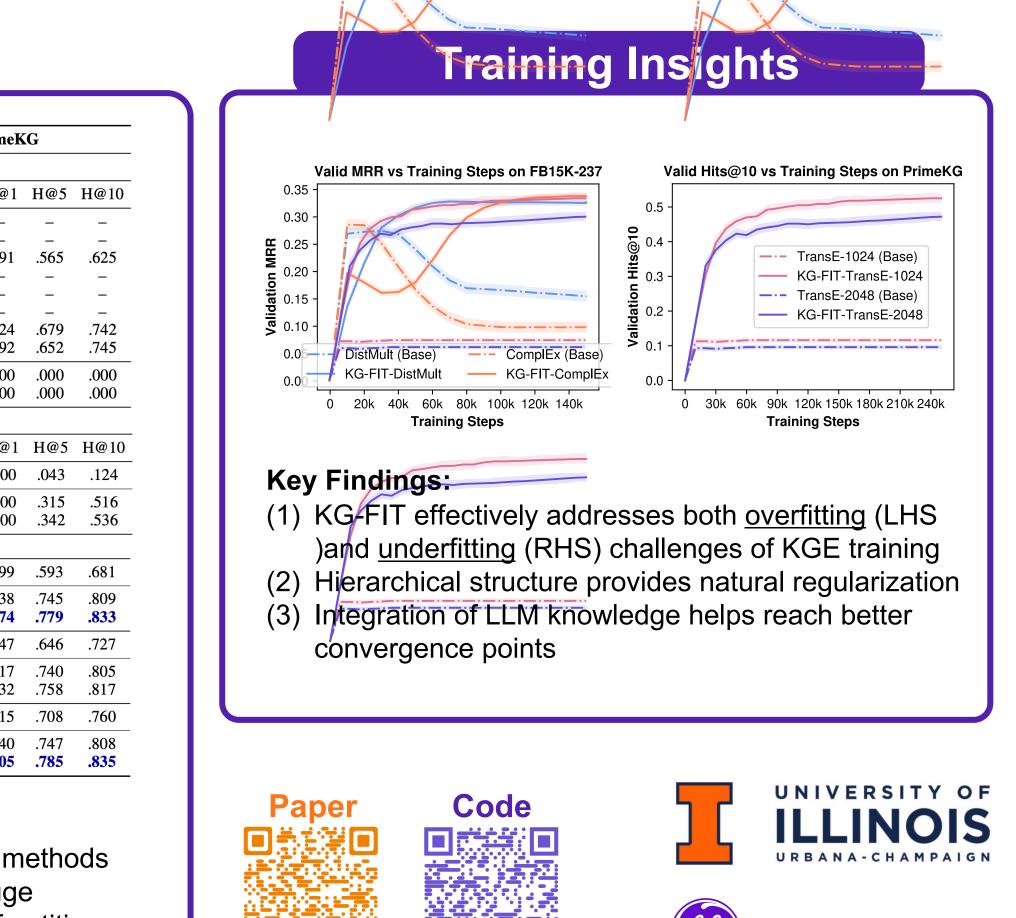
Create initial entity embeddings by concatenating:

- Entity name embedding
- Entity description (generated by LLM) embedding

Step 2: Seed Hierarchy Construction

Apply agglomerative clustering to entity embeddings Select optimal hierarchy using silhouette score

Step 3: LLM-Guided Hierarchy Refinement


Refine the seed hierarchy constructed with LLM's suggestions through an iterative bottom-up tree editing process

Step 4: Knowledge Graph Fine-Tuning

- 1. Initialize entity and relation embeddings
- 2. Fine-tune the KG embedding with score
- functions (defined any base KGE models) and the knowledge in the entity hierarchy.

URBANA-CHAMPAIGN

GE HealthCare

