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Abstract

Objective: We aim to create a medical reading assistant that combines a large language model with a medical
ontology to generate a clinical knowledge graph tailored to the specific context of the medical textbook. This
tool will help learners acquire medical knowledge more efficiently and actively engage with the material.

Materials and Methods: The developed tool, named MedKG, is an interactive software designed to generate
knowledge graphs (KGs) from medical textbooks in PDF format, utilizing the advanced capabilities of large
language models (LLMSs). It offers a flexible and user-friendly interface that allows users to select specific pages
or documents for KG generation and to customize prompts for LLMs to meet their individual needs.
Additionally, MedKG includes features for users to interact with and modify the nodes and edges in the generated
graphs, highlighting the importance of human-in-the-loop interaction. Our user studies involve medical students,
assessing MedKG 's effectiveness in enhancing their study efficiency and comprehension of medical knowledge
from various textbooks.

Results: The results indicate that MedKG successfully translates complex medical texts into clear,
understandable knowledge graphs. This visualization aids medical students in grasping intricate medical
concepts and theories more effectively.

Conclusions: The study concludes that MedKG, leveraging the synergy of large language models and user
interaction, significantly aids medical information comprehension and retention. It presents a promising
advancement in medical education tools, facilitating a deeper understanding of complex medical knowledge
through innovative technology.

Keywords: Medical Education, Knowledge Graph, Large Language Models, Medical Ontology, Interactive
Learning Tool, Medical Textbook Comprehension.
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Introduction

Medical education presents a unique challenge to students, requiring the assimilation of vast, diverse, and
complex information within a constrained timeframe. This knowledge, drawn from various sources including
textbooks, research articles, and lectures, is textually dense and conceptually intricate. Crucial to this educational
process is the ability of students to form mental knowledge graphs. These graphs are conceptual frameworks
that interlink various medical concepts, illustrating relationships vital for application in future clinical scenarios.
However, the existing educational tools often fall short of aiding students in efficiently and effectively extracting
and organizing this information into coherent mental structures.

Artificial Intelligence (Al) has opened new frontiers in numerous fields, including medical education.
Specifically, the emergence of Large Language Models (LLMs) like ChatGPT has introduced novel possibilities
in processing and interpreting extensive textual data. These models can potentially deconstruct and synthesize
complex medical texts, offering significant advantages in educational contexts. The ability of LLMs to navigate
and interpret dense academic material can be pivotal in transforming the traditional methods of medical learning.

In light of these developments, we introduce MedKG, a tool that leverages the capabilities of ChatGPT to
construct knowledge graphs from medical resources. MedKG was designed to analyze various types of clinical
text, including pathophysiology and pharmacology textbooks, USMLE board-style textbooks, research articles,
and clinical vignettes. This approach is intended to encompass the broad spectrum of materials used in medical
training.

The user-study component of our research included first- and second-year medical students at an allopathic
medical school with an organ-system-based curriculum. The study's objective was to evaluate the effectiveness
of MedKG in enhancing these students' educational experience. We obtained qualitative and quantitative data
reflecting MedKG’s performance, focusing on its usefulness in facilitating the comprehension and retention of
medical information. This project’s overarching mission was to develop an innovative and impactful tool for
medical education that meets the evolving needs and emerging challenges of modern medical training.

Background and Significance

The success of Large Language Models (LLMs) provides excellent opportunities for many domain-specific
applications, including medical education. This section underscores the pivotal role of LLMs, emphasizing
their influence through key studies and developments. LLMSs' contributions, including dialogue agents and
conversational models, are instrumental in fostering interactive learning in medical education [1]. Their
advanced natural language processing abilities have proven effective in facilitating more engaging
interactions between learners and complex medical texts.

In medical education, LLMs offer the dual benefits of condensing complex medical information into
digestible forms and improving patient-practitioner communication, particularly in delicate areas such as
addiction or sexually transmitted diseases [2, 3]. LLMs can aid healthcare professionals in improving
patient interactions, which is crucial for effective care. In digital health applications, LLMs have also shown
promise in engaging and educating patients despite current technological constraints. Regarding clinical
knowledge encoding, LLMs have demonstrated remarkable proficiency in comprehending and interpreting
medical data [4], an essential feature for medical students who must master a broad spectrum of clinical
concepts for practical application. Moreover, ethical considerations, particularly in data privacy and domain
adaptation, are critical when integrating LLMs into healthcare settings [5]. This underscores the importance
of careful deliberation in deploying Al in sensitive domains such as healthcare. Exploring LLMs in medical
examinations, including their assessment capabilities in tests like the United States Medical Licensing
Examination (USMLE), provides valuable insights into their role in medical education and knowledge



evaluation [6, 7]. LLMs have also been proposed for creating simulated patient scenarios and didactic
assessments, illustrating their adaptability in enriching traditional medical education methods [8].

Regarding the use of knowledge graphs (KGs) in education [9], previous studies [10, 11, 12, 13] have
endeavored to create complex pipelines involving numerous processing steps such as named entity
recognition (NER) [14], entity linking [15], and relation extraction (RE) [16]. These approaches, while
comprehensive, presented challenges in practical educational system deployment. However, the emergence
of LLMs and their superior natural language processing capabilities [17, 18, 19, 20], including advanced
NER [20, 21] and RE [22, 23], has obviated the need for traditional, intricate KG construction methods.
The use of prompting methods [24, 25, 26], a well-researched approach for querying LLMs to address
specific problems, has recently been shown to effectively generate KGs directly from text [27] or even from
the hidden parameters of LLMs themselves [28]. Thus, using LLMs for KG generation marks a significant
leap forward in medical education. The ability of our developed MedKG to process, simplify, and interpret
complex medical information, combined with its interactive capabilities, makes it an invaluable asset in the
educational toolkit.

Materials and Methods

Generating knowledge graphs from text with large language models

In this study, we present MedKG, a software platform that leverages the power of large language models
(LLMs) for knowledge graph (KG) generation from user-provided texts, catering to the demands of data-
driven research. An illustration of it is shown in Figure 1.

MedKG comprises four integral components: (1) the document manipulation panel enables the upload and
handling of multiple documents; (2) the prompt designing panel displays a textbox for the user-defined
prompts that facilitate KG generation; (3) the text area panel where users input the target text for KG
construction; and (4) the KG panel, which not only generates the KG but also allows for its refinement.
We provide a review of MedKG, outlining its operational logic in a manner that mirrors the user's journey:
beginning with document upload and culminating in the generation of knowledge graphs. This sequential
description aims to offer an overall understanding of the platform's functionality.

Step 1: Uploading Documents and Defining Target Context

MedKG offers a robust feature for uploading multiple documents, thereby allowing for the creation of
knowledge graphs that amalgamate varied content across different pages and documents. Users, post-
upload, can choose specific pages to be transformed into knowledge graphs. The selected content can be
transferred to the text area panel by directly copying text (ideal for predominantly text-based documents)
or using an optical character recognition (OCR) tool [42] for pages with images or tables. The text area
panel acts as the source for generating the knowledge graph. This area is dynamic and user-editable,
providing the option to modify the content by adding or subtracting information as necessary.
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Figure 1. The overview of our developed MedKG software. We use dotted grey boxes and text explainable to
illustrate each component of the framework. We use “Robbins Basic Pathology 9th edition — page 366,
Lippincott pharmacology — diuretics” as the input in this example.

Step 2: Employing LLM for Knowledge Graph Triple Extraction

The process progresses by using a prompting technique to guide the LLM in generating a list of knowledge
graph "triples." Each triple, formatted as [ENTITY1, RELATIONSHIP, ENTITY?2], captures a relationship
between two entities. The default template for this operation, illustrated in Figure 1, includes (1) general
instructions defining the triple extraction task; (2) an example demonstrating the task execution; (3) a
placeholder for the source text (added in the previous step) from which KG triples are extracted; and (4) a



command prefix (“update™) signaling the LLM to commence triple extraction. We use the model “gpt-3.5-
turbo-instruct” [29] as the LLM for this extraction process. To trigger this extraction, the user only needs
to click the “Generate” button in the KG control panel.

Step 3: Post-processing and knowledge graph visualization

Upon receiving the response from the Large Language Model (LLM), we employ a regular expression
technique to meticulously extract the JSON string embedded within. This string is then parsed, enabling us
to concisely summarize the output. During this summarization, we focus on distilling the information
specifically pertaining to nodes and edges. A representative example of this process and its resulting output
is showcased in Figure 2.

"nodes": [ "edges": [

{ {

"id": "heart failure", "from": "heart failure",

"label": "heart failure” "to": "systolic dysfunction",

1, "label": "is due to"

{ H

"id": "systolic dysfunction", {

"label": "systolic dysfunction" "from": "heart failure",

1, "to": "diastolic dysfunction",

{ "label": "can result from"

"id": "diastolic dysfunction", },

"label": "diastolic dysfunction" {

}, "from": "elderly persons",

] "to": "heart failure",
"label": "are more commonly affected by"
]

Figure 2. An example of a JSON file of the KG parsed from LLM’s output.

We then use “react-graph-vis” package [30] to visualize this data as an interactive KG, shown in the demo
we present in Figure 1.

Interactive features of the MedKG

The control panel in MedKG offers users a dynamic interface to interact with the generated knowledge
graphs (KGs). This interaction includes adding, modifying, or deleting nodes and edges within the graph.
To add a node or edge, users are required to input relevant information into three designated textboxes.
These boxes are arranged vertically and correspond to the “source node,” “edge,” and “target node,”
respectively. Once the information is entered, users can click the “Create” button to add the new element
to the graph. Modifying a node or edge is also streamlined. Users begin by selecting the desired node or
edge on the graph. This action automatically populates the text boxes with the existing information, which
users can edit as needed. To finalize these changes, clicking the “Modify” button updates the graph with
the revised data. For deletion, users select the node or edge they wish to remove and then click either the
“Delete Node” or “Delete Edge” button, depending on their intent. This action promptly removes the
selected element from the graph. Additionally, MedKG provides the functionality to download the graph in
a JSON file format, as illustrated in Figure 2. This feature is particularly useful for users who prefer or
require programmatic editing of the graph.

Other features: node/edge clustering, user repository, searching.

To enhance the visualization of the generated Knowledge Graph (KG), MedKG includes an optional
node/edge clustering feature. Users can activate this function by clicking on two dedicated buttons at the
top of the KG panel. Upon activation, MedKG’s backend initiates a request to an embedding service [31],
specifically utilizing the 'test-embedding-ada-002' model. This request aims to acquire embedding vectors



for all nodes and edges within the KG. Subsequently, an agglomerative clustering algorithm [32] is applied,
which utilizes cosine similarity between embedding vectors to group the elements. This process results in
nodes and edges with similar semantic meanings clustered together, indicated by matching colors. This
process of embedding retrieval and clustering is swift. For instance, in the case where the graph contains
around 100 nodes (a considerably large graph for human cognition), the entire operation is completed in
approximately 1.5 seconds.

Moreover, MedKG features a user repository function, leveraging Google's Firebase [33] to securely store
users' data. This functionality allows users to save various elements, including PDF files, user-specific
prompts, extracted texts, and generated Knowledge Graphs (KGs). Users can save these elements
individually or collectively as part of a project using the "Save" buttons provided on the interface. Users
wishing to revisit their previous work can easily do so by selecting the desired file and clicking the "Load"
button. This feature efficiently reloads the selected data, significantly streamlining the process and saving
users the effort of recreating previous progress. Additionally, MedKG has more functions, such as within-
pdf and within-graph searching, wiki-searching, and hierarchical visualization.

Conducting user studies with first- and second-year medical students

To gather feedback and assess the efficacy of the tool on medical education, first and second year medical
students at Carle Illinois College of Medicine were recruited. The first version of the tool was released in the
first week, and based on the feedback gathered, updates were added to the tool and released as a newer version
for additional feedback. The third stage of user studies is currently in progress and entails each student taking
two separate quizzes on different topics within medicine. For one quiz they will have access to a PDF with
associated literature and for the other a PDF as well as a corresponding KG generated with the tool.

Results

Sources of text

After exploring a variety of learning materials utilized by medical students in their pre-clinical education, we
discovered that the most helpful graphs were generated from research articles and textbooks rather than United
States Medical Licensing Examination (USMLE) board preparation resources. Denser sources of text, such as
Robbins Basic Pathology and Costanzo Physiology, offered a richer basis of knowledge from which relations
could be extracted. This is opposed to First Aid, a textbook with high-yield content that medical students use
frequently in preparation for their USMLE exams, which contains knowledge already synthesized in the forms
of tables and charts.

Figures 3 and 4 below are knowledge graphs generated separately from the First Aid 2020 edition and Robbins
Basic Pathology 9™ edition with their corresponding sections on the topic of heart failure. As seen in Figure 3,
the tool generated separate graphs corresponding to each fragment of information provided on page 309 of the
First Aid textbook. Many of the graphs consist of no more than two edges, which can largely be attributed to the
“bullet-point” structure of text in First Aid. For example, the text “ACE inhibitors or angiotensin Il receptor
blockers and spironolactone decrease mortality” was correctly converted into a graph with the nodes “ACE
inhibitors or angiotensin II receptor blockers” and “spironolactone” correctly pointing via separate edges of
“decrease” to the common node of “mortality”. Interestingly, we note that the LLM could recognize the symbol
“1” in “spironolactone | mortality” and extracted the relationship “<spironolactone, can reduce, mortality>".
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Figure 4. Knowledge graph generated from Robbins Basic Pathology (Page 366 to 368). Page 367 shown.

In comparison, the graphs based on the heart failure section in Robbins Basic Pathology (Figure 4) consist of
more connections with shared clinical correlations between the central and neighboring nodes. One graph clearly
illustrates the common effects of left-sided heart failure and the downstream consequences if any of them were
to evolve. With “left-sided heart failure” serving as the central node, the peripheral nodes of tachycardia,
cardiomegaly, and S3 heart sound indicate some of the example consequences of this condition.
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In another example, the node of “decreased renal perfusion” leads to a series of nodes and edges that indicate
activation of the renin-angiotensin-aldosterone-axis and subsequent occurrence of prerenal azotemia. This
correctly highlights the downstream effects of lack of blood flow to the kidneys and how this ultimately results
in pulmonary edema, further exacerbating the patient’s cardiac condition. The path branching from the node,
“chronic dilation of the left atrium”, provides another example that guides the learner through the clinical
reasoning of how volume-overloaded states increase the risk of atrial fibrillation and the increase the potential
downstream consequence of deadly thrombi formation. The thought process depicted in these knowledge graphs
is especially valuable for students to deploy when solving USMLE questions that probe for answers one step
removed from the immediate factoid provided in First Aid.

User studies

Shortly after launching the tool to first- and second-year medical students at Carle Illinois College of Medicine,
the platform boasted 63 active users. The most-used text sources uploaded by students were research articles,
First Aid, Robbins and Cotran, Pathoma, Sketchy, and Costanzo and Katsung. The feedback from the first week
of release highlighted the application’s ability to connect concepts together and pull relevant information from
the text. Recommendations for improvement, which were added in the subsequent week’s updated version of



the tool, included a search feature, color coding of common nodes and edges, and the ability to generate graphs
from more than one source simultaneously. The user feedback results, presented in Figure 5, reflect the practical
application and effectiveness of the knowledge graph tool among first and second-year medical students at the
Carle Illinois College of Medicine. In addition to the questions shown up in Figure 5, we further asked some
questions with binary (yes/no) answers, which are discussed as follows. When students were asked, "Did these
knowledge graphs help you gain a better understanding of the topic?", a significant majority of 71.4% responded
with "yes". This suggests that the tool played a beneficial role in enhancing the comprehension of medical topics.
When posed with the question, "Did the tool help you recognize connections between concepts that you hadn't
noticed prior?", more than half of the students, 52.3%, answered "yes". This response indicates that the
knowledge graphs effectively revealed new insights and relationships within the material. However, 23.4% of
the students were “unsure", indicating a potential area for further refinement of the tool to assist in illuminating
connections more clearly for all users.

These findings underscore the tool's potential as an innovative educational aid, capable of supporting the
synthesis and visualization of complex information, thereby enriching the learning process for medical students.

Discussion

In this study, we present a new tool that can complement the medical education process. One of the features that
the students found most useful was the search function for specific concepts as it allowed them to create focused,
context-specific graphs that could extract and establish connections from various parts of the text. The tool also
supports a multi-source upload, which aids in identifying commonalities among information shared for specific
concepts across multiple texts. This feature is especially beneficial in medical education where students often
refer to multiple resources while studying, a process that can be laborious and time-consuming.

We envision that this application may be integrated within various forms and styles of medical education as a
method for students to expand and reinforce their understanding of educational material by supplementing their
studying approach with the generated knowledge graphs. Specifically, many medical schools are transitioning
to Problem-Based Learning (PBL) [34], an approach centered on learning through the discussion of clinical cases
corresponding to curricular learning objectives. Such an approach facilitates correlation of core medical concepts
to practical patient scenarios, but often lacks structured textual information for students to reference outside the
classroom. This tool can be incorporated into the PBL environment to augment student education by equipping
them with knowledge graphs generated based on these clinical cases. By referencing these graphs and discussing
the conceptual relationships with one another, students can engage in active learning and gain enhanced
perspective of the material.

Limitations and future work:

While automatically generated knowledge graphs are beneficial in many ways, they may not comprehensively
represent the relevant information of a referenced text. However, the efficiency and clarity of the generated
knowledge graphs provide students with an accessible foundation for study. In this way our tool complements,
rather than replaces, more exhaustive educational resources. By first comprehending the core concepts of a
medical top, and the relationships between those concepts, students can more easily synthesize, integrate, and
retain subsequent information.

While MedKG is prompted with actual textbook content, it is still susceptible to the common risk of generating
hallucinations or other non-factual information that may not accurately reflect the source text [35, 36, 37]. To
mitigate this issue and reduce the potential negative impact of such inaccuracies, we added a clear instruction in
the prompt: “If an update is related to deleting an entity, provide [DELETE", ENTITY].” By following this
directive, the LLM can easily remove any incorrect or non-existing relationships from the KG during its



autoregressive generation, thereby improving the accuracy and reliability of the generated content. As a future
work, we will integrate fact-checking methods [38, 39, 40] to ensure progressively more accurate KG generation.

Another challenge posed by MedKG is the variability inherent in knowledge graph (KG) generation, attributable
to the autoregressive nature of current LLMs [41]. This characteristic can result in disparate outputs for identical
inputs across separate instances. A straightforward remedy is to perform multiple generations, thereby capturing
a broader array of relationships within the data. As a more sustainable solution, we propose the adoption of a
locally hosted open-source LLM in our forthcoming work. This approach would give us greater control over the
seeds within our computational environment, thereby enabling us to achieve more consistency in the model's
output. This advancement would increase the predictablity of KG production, thereby enhancing the reliability
of MedKG as a study aid.

As with any new educational tool, the learning curve is steepest when first navigating the MedKG tool. The
initial week of launch for the medical students involved creating detailed tutorials and troubleshooting guides.
Because medical students are often faced with a myriad of different educational resources when studying, the
adoption of a new tool like MedKG into their study regimen may be a challenge. However, as the user base
expands, a library of knowledge graphs shared between medical schools and students nationwide could be
constructed. Since all students preparing for the USMLE board exams are expected to understand the same
learning objectives, it may be helpful for a student to review the various knowledge graphs generated for a
particular concept by students at other institutions.

MedKG also has potential value for instructors, specifically regarding the assessment of written assignments
submitted by students. From the graphs generated from student work, the facilitator can evaluate whether a
student touched on certain core concepts and may more quickly ascertain whether their understanding meets the
learning objectives of the curriculum.

Conclusion

In this study, we present MedKG, an innovative software platform that leverages the advanced text
comprehension and relationship extraction capabilities of large language models to convert user-uploaded
documents into comprehensive knowledge graphs. Our objective was to assess the impact of knowledge graphs,
derived from medical texts, on the study efficiency of medical students. The user studies we conducted
consistently demonstrated a consensus among students that MedKG effectively synthesizes and conveys useful
knowledge. Moreover, the students acknowledged that the knowledge graphs facilitated a deeper understanding
of their study material and enabled them to discover previously unobserved concepts. The features unique to
MedKG were particularly well-received, suggesting that the tool not only meets the educational requirements of
the students but also enhances their learning experience in ways that are unavailable among currently available
education tools. Looking forward, we plan to refine MedKG, focusing on enhancing its user interface and
ensuring the stability of knowledge graph generation. Our goal is to provide a more intuitive and reliable resource
that further supports the educational endeavors of medical students.
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Clinical vignettes

We also investigated the tool’s ability to synthesize content of standardized clinical vignettes from a Family
Medicine Clerkship exam provided by the University of Virginia School of Medicine and provide clinical
diagnoses illustrated in a knowledge graph form. Patient narratives consisting of chief complaint, past medical
history, imaging and lab results along with the question “what is the most likely clinical diagnosis” without the
multiple-choice answers were fed into the tool. It was important to indicate that the “most likely "diagnosis was
requested because, without the specification, the generated knowledge graph would consist of all possible
differential diagnoses including those not tailored to the patient case discussed.

The tool was able to extract the relevant information from the question stem that was pertinent to making the
correct clinical diagnosis. The restructuring of the paragraph text into the form of a graph organized the
information in a visual way that highlighted aspects of the patient case not immediately evident upon reading
the vignette. As seen in the figures below, components of the patient’s history were distributed into separate
graphs that correspond to different sections of the medical documentation notes physicians create in electronic
health records. With central nodes being “laboratory evaluation”, “physical exam”, “lipid profile” and their
corresponding results placed peripherally, it is visually easier to differentiate between normal and abnormal
values.

Figure 5 illustrates graphs corresponding to a clinical vignette that makes the correct most likely diagnosis of
enterobiasis, matching one of the choices provided in the original question, as well as additional information
about the disease such as treatment, commonly affected demographics, and diagnostic tests. The graph of another
clinical vignette correctly illustrated the most likely diagnosis of glomerulonephritis and provided other potential
associations related to her facial edema. For the case of a man with ptosis and mild dysarthria, a graph depicted
related clinical diagnoses as well as the indication matching the correct answer choice of myasthenia gravis.

e FigDh
o Uva fam medicince lerkship; https://med.virginia.edu/family-medicine/education/student-
programs/third-year-clerkships/
o “A 50 year old female with a ten year history of type Il diabetes presents for regularly-
scheduled follow up. She has no complaints, and just visited her ophthalmologist last week.
Current medications include glyburide, metformin, and simvastatin. On physical exam,
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vital signs are virtually unchanged from previous visits, with temperature 37.1 C (99 F),
HR 80, BP 140/83, RR 15, and O2 Sat 98% on room air. Neurological examination reveals
diminished sensation to light touch and pinprick in a stocking distribution on the lower
extremities bilaterally. Remainder of physical exam is benign. Laboratory evaluation
reveals: Na+ 136, K+ 3.9 Cl- 104, HCO3- 25, BUN 15, Cr 1.0, Glucose 150; hemoglobin
Alc: 7.1%; Urinalysis: negative for ketones, glucose, bilirubin, leukocyte esterase, or
blood; moderate protein; Lipid profile: Total cholesterol 146, HDL 46, LDL 100. At this
time, which of the following would be the most appropriate intervention?”

Fig E

Q5: An otherwise healthy 8 year old girl presents with two weeks of perianal pruritis. She has two younger brothers, one of whom has had similar complaints for the
past few days. Physical exam reveals perianal erythema with mild excoriations. The “scotch tape test” reveals several bean-shaped white eggs. What is the most likely
diagnosis in this patient?

Q9:g

A seven year old female is brought to the physician by her mother because of facial swelling and dark, cola-colored urine. These symptoms began abruptly two days
ago and have been associated with anorexia and malaise. There have been no known sick contacts. Her mother states that the child is up to date with her immunizations
and has been in good health except for a runny nose and sore throat around two weeks ago, which resolved after a few days without treatment. Vital signs are
temperature 37.2 C (98.9 F), heart rate 95, and blood pressure of 148/86. There is diffuse edema of the lower extremities, face, and eyelids. Lungs and heart are clear
to auscultation. Urinalysis shows moderate hematuria and proteinuria, and dysmorphic RBCs and occasional RBC casts are noted on microscopic examination. Based
on these findings, what is the most likely diagnosis?



Q14: A 74 year old man presents with double vision. He first noticed this several months ago, and although his symptoms wax and wane, he now experiences daily episodes of “seeing double,”
most frequently in the evenings. He also reports increased generalized fatigue and notes that he sometimes gets so tired at dinner that he “can hardly chew” his food. Past medical history includes
osteoarthritis, hypertension, and abdominal aortic aneurysm repair. Physical examination reveals a comfortable, age-appropriate elderly gentleman with mild dysarthria. Cardiac auscultation reveals
both an S4 and a 2/6 holosystolic murmur heard best at the left upper sternal border with radiation to the carotids. On neurologic exam, the patient has 5/5 strength proximally and distally. Sensation
is intact and reflexes are 2+ throughout. Ocular movements are sluggish but intact in all directions. The patient has mild bilateral ptosis, which is noted to increase with sustained upward gaze.

Stroking the bottom of the foot results in downward deflection of the great toe bilaterally. What are the pOSSible Clinical diagnoses and Wh|Ch is the
correct one?
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