s3: You Don’t Need That Much Data to Train a Search Agent
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* LLM’s own knowledge 1. s3 outperforms all previous methods with 70x less training data than Search-R1.
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* Gain Beyond Finetuned w/ RL using GBR (Any LLM, Frozen) training on medical data.
3. Searcher-only is much better than end-to-end optimization for RAG.
Why exact match (EM) is a horrible metric/reward s3 Framework

for open question-answering task with LLMs?
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We introduce a new metric GenAcc — checking answer span in the Searched Docs
response, with LLM-as-a-Judge, which achieves 96.4% alignment Update Doc T Compute
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Generation Accuracy vs Human Judgement

Evaluation Flow of Generation Accuracy

RL Training with “Gain Beyond RAG” Reward

. D 32| |Drac
Gain Beyond RAG = Acc(, 31, ) - Acc( , , )
y 6 | ot [a])-ace|g) Fo [A]

Input: Prediction p, Gold Answers A

Step 1: Normalize p and .A (lowercase, remove punc-
tuation and articles).

Step 2: span_check — If any a € A is a token span
in p, return GenAcc = 1.

Step 3: judge_check — Prompt LLM: “Does p con-
tain any of A?”

Step 4: Return GenAcc = 1 if LLM says yes; else 0.
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(Gain Beyond RAG: only reward the (1-0) case or penalize the (0-1) case to Searcher)
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LLMs are already good

searchers. GBR boosts them. Ablation Study of Proposed Components
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Steps s3 w/0 Selection w/o Begin with Search w/o Both
* With human-like evaluation metric, we can
see LLM could search well at the beginning,
which matches our results of prompting . .
based methods Future Directions Code & Contact
* Gain Beyond RAG as reward leads to faster
and better convergence. » s3 shows that we can efficiently train a task-specific auxiliary agent while =] f s 3] Starred 766 v
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Metric Matters

Gomice LiMJudee Spam EM * Although search and answering are decoupled, the answering stage remains https://github.com/pat-jj/s3

unoptimized. A natural extension is to train a lightweight answering-specific Patrick (Pengcheng) Jiang,
f&?ﬁ%ﬁ S S agent that reasons more effectively over the searched context. Code pi20 @illinois.edu
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