

DeepRetrieval: Hacking Real Search Engines and Retrievers with Large Language Models via Reinforcement Learning

Pengcheng Jiang^{*}, Jiacheng Lin^{*}, Lang Cao, Runchu Tian, SeongKu Kang[†], Zifeng Wang, Jimeng Sun, and Jiawei Han

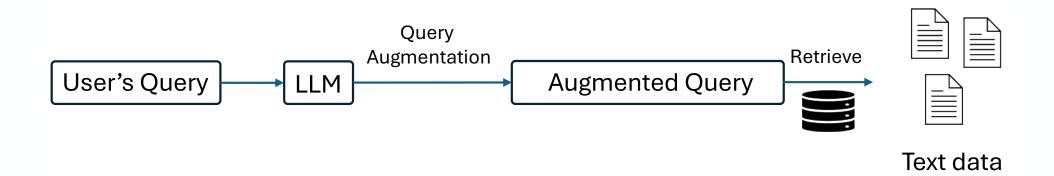
University of Illinois Urbana-Champaign ⁺Korea University

Presenter: Pengcheng (Patrick) Jiang

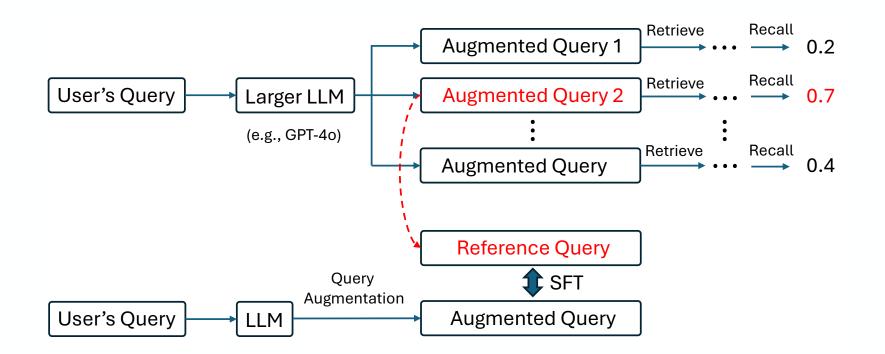
Overview

- Background
- Method DeepRetrieval
- Experiments
- Discussions
- Conclusion

- Information retrieval systems often struggle with the semantic gap between user queries and relevant documents.
- Query Augmentation bridges this gap by reformulating queries to better match relevant content:



Previous Approaches (Distillation from Larger LLMs):



• Costly and highly rely on the quality of reference query (often suboptimal)

Previous Approaches (Distillation from Larger LLMs):

X Dependence on Reference Queries:

Distillation relies on expensive, manually curated reference queries (often from large LLMs like GPT-40). These queries may not be optimal for the target retrieval task.

Indirect Optimization:

Distilled models learn to mimic query form—not retrieval effectiveness. They optimize for similarity, not metrics like Recall@K or NDCG.

6 Cost and Bias:

Generating supervision data is costly and timeconsuming. Distilled models may inherit biases from the teacher, limiting generalization.

Limited Exploration:

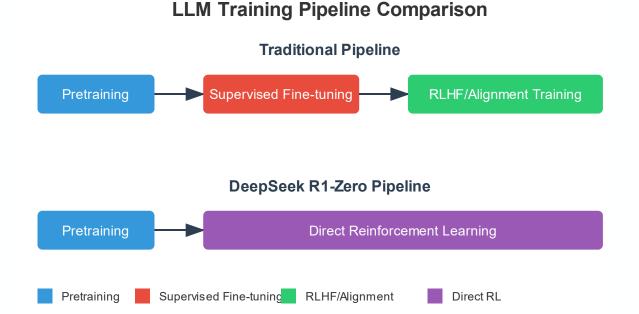
SFT models can't explore beyond fixed training data, making them prone to local minima and less adaptable to new tasks.

Can we skip reference queries and still train an effective query generator?

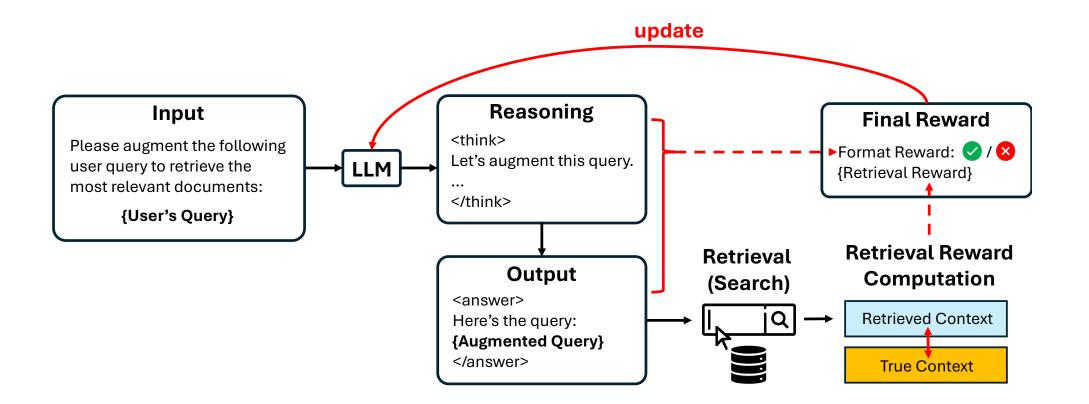
Yes, <u>DeepSeek-R1-Zero¹</u> was trained in this way.

Hi, I'm DeepSeek. How can I help you today?

- Traditional LLM training typically relies heavily on supervised fine-tuning with human-labeled data
- DeepSeek R1-Zero starts with just the base model and applies RL directly, learning reasoning/generation capabilities from scratch through trial-and-error



DeepRetrieval



DeepRetrieval learns to generate queries through trial-and-error, guided by real retrieval outcomes from live systems.

DeepRetrieval

	DeepRetrieval	Distillation-Based Methods
Training Signal	A Direct reward from retrieval outcome	B Matches teacher or annotated reference queries
Supervision Needed	X No supervision or labeled queries	Requires supervised data or teacher outputs
Adaptability	Retriever-agnostic and domain- flexible	X Needs new data or distillation per domain
Cost Efficiency	5 Low-cost (no human-in-the-loop)	Weigh-cost due to human annotation and large LLMs
Model Size Efficiency	Strong results with small (3B) models	Typically relies on larger teacher models

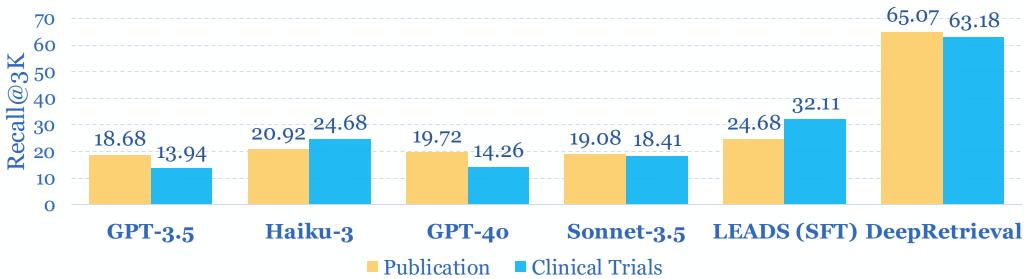
Experiments

We tested **DeepRetrieval** on four retrieval tasks:

Task	Description	Retriever Type	Metric	Examples
1. Literature Search	Retrieve scientific papers	Real Search Engines	Recall@3K	PubMed, ClinicalTrials.gov
2. Evidence-Seeking	Retrieve answer-containing passages for open QA	Sparse (BM25)	Hits@1/5/20 (H@N)	Natural Questions, TriviaQA, SQuAD
3. Classic IR	Improve performance on standard sparse/dense retrieval benchmarks	BM25 / Dense	NDCG@10	MS MARCO, FEVER, HotpotQA, SciFact
4. SQL Search	Generate SQL queries to retrieve structured records	Structured SQL backend	Execution Accuracy	Spider, BIRD

Experiments – Task 1: Literature Search

Task Definition: Search scientific papers/trials with search engines **Metric**: Recall@3K (How many ground truth papers are retrieved among the top-3k retrieved documents?)



Literature Search on Real Search Engines

DeepRetrieval-3B's **65.07%** vs. Previous SOTA (SFT)'s **24.68%** on PubMed Search API DeepRetrieval-3B's **63.18%** vs. Previous SOTA (SFT)'s **32.11%** on ClinicalTrials.gov Search API

Experiments – Task 2: Evidence-Seeking

Task Definition: Given a question, looking for the answer span in the retrieved documents. **Metric**: Hits@N (Is there an answer span in the top-N retrieved documents?)

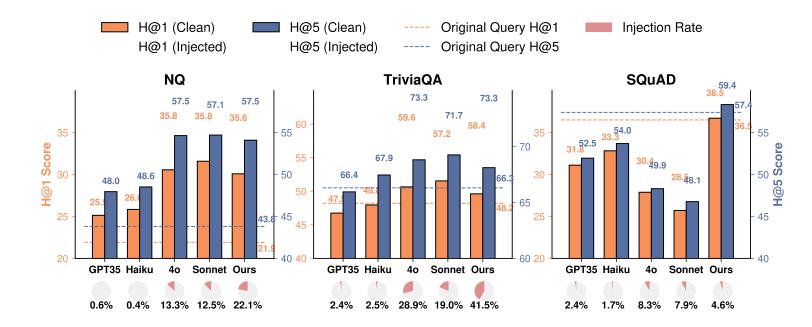
	Evidence-Seeking Retrieval											
		NQ			TriviaQ	A	SQuAD					
	H@1	H@5	H@20	H@1	H@5	H@20	H@1	H@5	H@20			
Original Query	21.9	43.8	63.0	48.2	66.3	76.4	36.5	57.4	71.1			
GPT-3.5	24.3	46.0	63.9	45.8	64.3	74.2	31.6	52.4	66.6			
w/o reasoning	25.2	47.5	66.3	47.5	66.8	76.7	33.9	54.9	69.5			
GPT-40	35.8	57.5	72.2	59.6	73.3	80.5	30.4	49.9	64.4			
w/o reasoning	29.1	56.2	69.3	53.4	70.1	78.7	33.0	52.2	66.7			
Claude-3-Haiku	26.2	48.6	66.4	48.8	67.9	77.7	33.3	54.1	68.4			
w/o reasoning	25.0	48.1	65.5	49.0	67.7	77.3	33.2	54.3	68.8			
Claude-3.5-Sonnet	35.7	57.1	72.5	57.1	71.7	79.7	28.5	48.1	63.5			
w/o reasoning	37.2	56.9	72.7	60.8	73.8	80.6	30.3	49.8	64.7			
Mistral _{7B-Inst}	26.9	48.8	66.0	50.0	66.7	75.9	27.7	46.6	61.6			
LEADS _{7B} (SFT)	-	-	-	-	-	-	-	-	-			
Qwen2.5 _{3B-Inst}	25.0	45.8	63.4	44.4	61.2	70.9	28.4	46.4	61.3			
w/o reasoning	23.8	45.3	64.0	46.0	64.4	74.2	32.3	52.8	66.8			
DeepRetrieval _{3B}	35.5	57.5	72.7	58.4	73.2	80.6	38.5	59.4	72.9			
w/o reasoning	26.9	48.8	66.9	52.0	69.4	77.7	37.8	58.0	72.5			

- 1. DeepRetrieval-3B achieved comparable performance with GPT-4o and Claude-3.5 on evidence-seeking.
- 2. Reasoning matters for DeepRetrieval

For this task, what if the model inject its own knowledge into the query, i.e., put the answer into the query?

Experiments – Task 2: Evidence-Seeking

Knowledge Injection Study for Evidence-Seeking Retrieval



- **DeepRetrieval** learns **adaptive injection strategies**, injecting more knowledge where helpful (e.g., 41.5% in TriviaQA), and minimizing injection where unnecessary (e.g., 4.6% in SQuAD).
- This study underscores the importance of dataset-specific strategies in query generation and highlights the adaptive reasoning capability learned via RL

Experiments – Task 3: Classic IR

Task Definition: Given a query, search relevant documents.

Metric: NDCG@10 (rewards retrieving relevant documents early in the top 10; higher is better.)

Methods	NFC S	orpus	FEV S	/ER D	Hotp S	otQA D	Scil	Fact D	MS- S	Beir D	MS S	5-н D	MS S	S-S D	MS S	5-T D
	3	D	3	D	3	D	3	D	3	D	5	D	3	D	3	D
Base Retriever																
BM25 / Dense	14.7	37.0	44.2	82.5	61.1	70.0	57.3	64.5	44.8	70.4	32.5	32.4	38.8	31.1	51.3	49.8
Zero-shot Query Gen (w/o	o reaso	ning)														
GPT-3.5	30.1	33.0	55.0	64.5	58.1	54.1	66.4	58.9	43.1	69.1	28.8	31.7	35.4	33.0	48.8	50.6
GPT-40	31.8	33.6	59.1	72.2	58.0	70.2	66.4	65.5	47.8	68.5	21.8	27.8	28.5	28.5	43.4	48.2
Claude-3-Haiku	31.3	26.6	43.5	73.6	49.3	62.1	65.1	63.0	38.7	69.0	29.0	31.1	34.7	33.5	48.9	52.0
Claude-3.5-Sonnet	31.6	35.2	54.8	71.0	46.4	58.7	68.4	68.2	45.3	61.1	21.3	21.9	27.5	24.2	39.7	43.7
Qwen2.5-3B-Inst	20.9	33.9	55.5	71.4	51.7	64.7	65.1	62.9	31.3	66.9	26.3	30.5	31.6	33.0	46.7	49.2
Zero-shot Query Gen (w/	reason	ing)														
GPT-3.5	32.1	32.8	55.4	63.9	54.4	54.1	65.1	61.9	39.3	63.1	20.8	28.8	25.7	30.0	40.5	47.6
GPT-40	30.7	34.0	53.9	73.8	56.4	71.8	65.0	63.8	39.4	66.6	20.8	20.6	26.4	23.0	42.0	44.2
Claude-3-Haiku	29.6	36.0	59.9	74.9	55.6	65.2	68.9	65.6	44.7	67.2	16.5	24.2	22.4	25.4	37.6	43.5
Claude-3.5-Sonnet	30.7	36.4	55.7	75.8	55.2	67.6	68.7	65.9	47.8	63.9	18.6	18.5	27.3	23.6	41.6	43.8
Qwen2.5-3B-Inst	29.2	32.4	46.7	69.9	48.3	62.0	63.8	62.1	23.0	60.0	22.7	24.3	25.9	27.6	43.0	45.0
Ours (DeepRetrieval-3B)																
+BM25 / +Dense	34.0	37.7	66.4	84.1	63.1	70.1	64.6	66.4	53.1	70.4	34.7	32.5	41.1	36.1	53.8	52.3

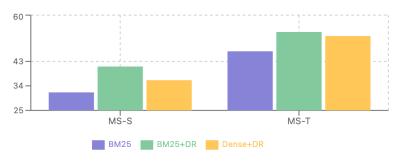
We use BM25 as the base sparse retriever for all the datasets, while using E5-Large as the base dense retriever for SciFact, use BGE-base-en-v1.5 for HotpotQA, FEVER, NFCorpus, and MS-Beir, and use vanilla Contriever for MS MARCO domain-specific (MS-H: health, MS-S: science, MS-T: technology) subsets.

Experiments – Task 3: Classic IR

Task Definition: Given a query, search relevant documents.

Metric: NDCG@10 (rewards retrieving relevant documents early in the top 10; higher is better.)

Methods	NFC	orpus		/ER	Hotp	otQA		Fact		Beir		5-Н		S-S		S-T
Wiethous	S	D	S	D	S	D	S	D	S	D	S	D	S	D	S	D
Base Retriever																
BM25 / Dense	14.7	37.0	44.2	82.5	61.1	70.0	57.3	64.5	44.8	70.4	32.5	32.4	38.8	31.1	51.3	49.8
Zero-shot Query Gen (w/o	o reaso	ning)														
GPT-3.5	30.1	33.0	55.0	64.5	58.1	54.1	66.4	58.9	43.1	69.1	28.8	31.7	35.4	33.0	48.8	50.6
GPT-40	31.8	33.6	59.1	72.2	58.0	70.2	66.4	65.5	47.8	68.5	21.8	27.8	28.5	28.5	43.4	48.2
Claude-3-Haiku	31.3	26.6	43.5	73.6	49.3	62.1	65.1	63.0	38.7	69.0	29.0	31.1	34.7	33.5	48.9	52.0
Claude-3.5-Sonnet	31.6	35.2	54.8	71.0	46.4	58.7	68.4	68.2	45.3	61.1	21.3	21.9	27.5	24.2	39.7	43.7
Qwen2.5-3B-Inst	20.9	33.9	55.5	71.4	51.7	64.7	65.1	62.9	31.3	66.9	26.3	30.5	31.6	33.0	46.7	49.2
Zero-shot Query Gen (w/	reason	ing)														
GPT-3.5	32.1	32.8	55.4	63.9	54.4	54.1	65.1	61.9	39.3	63.1	20.8	28.8	25.7	30.0	40.5	47.6
GPT-40	30.7	34.0	53.9	73.8	56.4	71.8	65.0	63.8	39.4	66.6	20.8	20.6	26.4	23.0	42.0	44.2
Claude-3-Haiku	29.6	36.0	59.9	74.9	55.6	65.2	68.9	65.6	44.7	67.2	16.5	24.2	22.4	25.4	37.6	43.5
Claude-3.5-Sonnet	30.7	36.4	55.7	75.8	55.2	67.6	68.7	65.9	47.8	63.9	18.6	18.5	27.3	23.6	41.6	43.8
Qwen2.5-3B-Inst	29.2	32.4	46.7	69.9	48.3	62.0	63.8	62.1	23.0	60.0	22.7	24.3	25.9	27.6	43.0	45.0
Ours (DeepRetrieval-3B)																
+BM25 / +Dense	34.0	37.7	66.4	84.1	63.1	70.1	64.6	66.4	53.1	70.4	34.7	32.5	41.1	36.1	53.8	52.3



Findings:

- (1) DeepRetrieval is more effective to boost sparse retrieval performance
- (2) When dense retrievers have already learned data distribution in the training set, the room left with query-rewriting is limited
- (3) For unseen data (MS-H, MS-S, MS-T), DeepRetrieval+BM25 outperforms dense retriever and its combination w/ DeepRetrieval, with 34x faster retrieval speed

Experiments – Task 4: SQL Search

Task Definition: Given a natural language question, generate a SQL query to retrieve the correct answer from a database.

Metric: Execution Accuracy — percentage of generated SQL queries that produce the correct answer when executed.

Findings:

- (1) DeepRetrieval outperforms GPT-40 and Claude-3.5 on Text-to-SQL task
- (2) Coder (base model pre-trained on code) performs better
- (3) RL from scratch outperforms SFT
- (4) "Cold start" works better for general-purpose base model (Qwen-2.5)
- (5) <u>Reasoning</u> works better for coder model (Qwen2.5-Coder)

•			<u> </u>
	Methods	BIRD	Spider
-	Zero-shot (w/o reasoning)		
	GPT-3.5	46.22	67.02
	GPT-40	55.35	73.50
	Claude-3-Haiku	43.16	64.88
	Claude-3.5-Sonnet	50.46	60.74
	Qwen2.5 _{3B-Inst}	29.66	52.90
	Qwen2.5-Coder _{3B-Inst}	30.77	50.97
	Qwen2.5-Coder _{7B-Inst}	45.24	64.89
	Zero-shot (w/ reasoning)		
	GPT-3.5	44.07	64.88
	GPT-40	55.93	73.40
	Claude-3-Haiku	43.81	67.44
	Claude-3.5-Sonnet	50.65	66.05
	Qwen2.5 _{3B-Inst}	30.83	55.13
	Qwen2.5-Coder _{3B-Inst}	33.57	54.45
	Qwen2.5-Coder _{7B-Inst}	45.57	67.70
	SFT (w/o reasoning)		
	Qwen2.5 _{3B-Inst}	33.77	56.67
	Qwen2.5-Coder _{3B-Inst}	39.77	58.61
	Qwen2.5-Coder _{7B-Inst}	44.07	65.96
	SFT (w/ reasoning)		
	Qwen2.5 _{3B-Inst}	37.29	60.93
-	Qwen2.5-Coder _{3B-Inst}	46.15	66.92
	Qwen2.5-Coder _{7B-Inst}	50.65	70.99
	Ours		
>.	DeepRetrieval _{3B-Base}	41.40	68.79
	w/ cold start	44.00	70.33
	w/o reasoning	39.57	70.24
-	DeepRetrieval _{3B-Coder}	49.02	74.85
	w/ cold start	50.52	74.34
	w/o reasoning	47.00	73.59
	DeepRetrieval _{7B-Coder}	56.00	76.01

Discussions

Why RL >>> SFT?

- **Direct Optimization**: RL optimizes retrieval metrics directly rather than mimicking reference queries
- **Exploration Advantage**: RL explores query space through trial-and-error, discovering patterns *human experts* might miss

For example:

P: Patients undergoing perioperative procedures, I: Desmopressin administration, C: Standard care without desmopressin, O: Minimising perioperative allogeneic blood transfusion

• **Task Adaptability**: RL performs consistently well across scenarios with varying levels of ground truth availability

They are also complementary : SFT can provide strong initialization for RL when model lacks domain capabilities (SQL coding)

Ι

Discussions

Think / Query Length Analysis

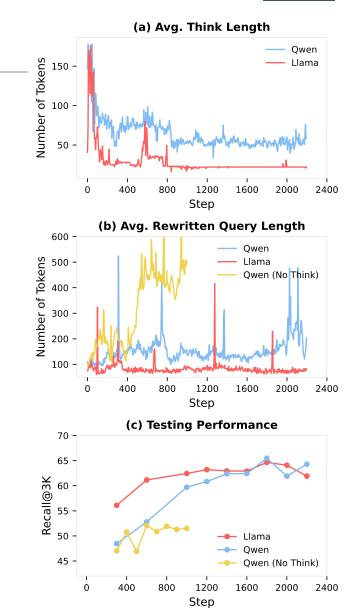
Reasoning Evolution: Unlike tasks (e.g. math) requiring long reasoning chains, reasoning length decreases over time as models internalize effective strategies

Reasoning/Think in DeepRetrieval acts as a strategy seeker

Different Strategies leading to similar performance: Models discover distinct approaches (Qwen favors longer queries, LLaMA produces shorter ones), yet achieve comparable recall (~65%) - demonstrating multiple valid paths to high performance

Without Reasoning: Models fall into local minima of query verbosity (yellow line) with lower performance (~52% vs ~65% recall)

DeepRetrieval _{3B}	65.07	63.18
w/o reasoning	51.90	53.31



Discussions

Think / Query Length Analysis

Step 400

OR physical health OR overall well-being) OR (clinical trial

registration OR controlled clinical trial))

Query: (HIV infection OR human immunodeficiency virus infection) AND (antiretroviral therapy OR antiretroviral regimens OR antiretrovirals) AND (nevirapine OR other antiretroviral regimens) AND (efficacy OR safety OR clinical outcomes OR pharmacokinetics OR pharmacodynamics OR side effects OR treatment effects OR treatment outcomes OR treatment efficacy OR **Owen (No Think)** treatment safety OR treatment effectiveness OR treatment safety OR treatment side effects OR treatment outcomes OR treatment assessment OR treatment evaluation OR treatment monitoring OR treatment followup OR treatment compliance OR treatment adherence OR treatment persistence OR treatment persistence) Query: ((asthma OR asthma management) AND (relaxation Query: ((dementia OR Alzheimer's disease) AND (exercise OR physical exercise OR physical therapy OR physical activity)) AND ((clinical trial OR randomized controlled trial) OR (comparative study OR controlled clinical trial) Qwen OR (exercise intervention OR physical activity intervention) OR (no exercise OR standard care) OR (cognitive function

LLaMA

Query: ((Collagenase OR Collagenase enzyme OR Deglycerolipase) AND (Wound treatment OR Surgical debridement OR Ulcer treatment))

Step 600

Query: (testosterone supplementation OR testosterone therapy) AND (ovarian insufficiency OR poor ovarian response OR ovarian dysfunction OR ovarian failure OR ovarian suppression OR ovarian inertia OR ovarian underachievement OR ovarian decline OR ovarian 衰退 OR ovarian衰竭 OR ovarian萎缩 ... (repeat "ovarian萎缩 " 63 times more)

therapy OR mindfulness therapy OR biofeedback OR cognitive behavioral therapy OR cognitive behavioral therapy OR relaxation technique OR mindfulness technique OR cognitive behavioral intervention OR cognitive behavioral intervention OR asthma management program OR asthma control program OR asthma control therapy OR asthma control treatment OR asthma control technique OR asthma control intervention OR asthma control therapy)) AND ((clinical trial) OR (randomized controlled trial) OR (systematic review) OR (meta-analysis))

Query: ((Total Knee Arthroplasty Trial OR Total Knee Arthroplasty Surgery) AND (Drainage OR Antiotics Trial OR Surgical Drainage Trial OR Postoperative Drains Trial))

(a) Avg. Think Length Qwen Llama 150 00 50 400 800 1200 1600 2000 2400 0 Step (b) Avg. Rewritten Query Length 600 -Qwen Llama 500 Owen (No Think) 400 -

Tokens

of

Number

Tokens

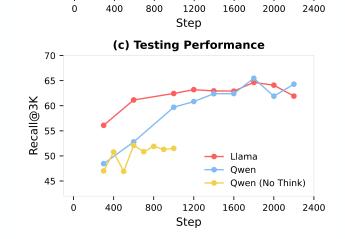
of

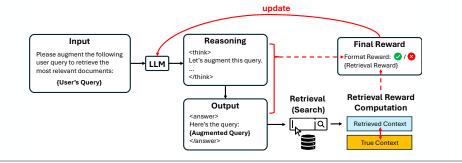
Number

300 -

200

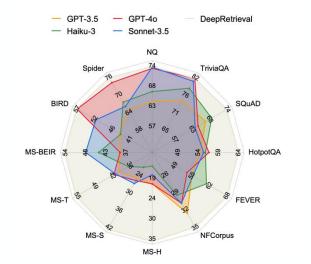
100





Conclusion





- DeepRetrieval introduces a new paradigm: training LLMs for query generation via direct reinforcement learning from real retrieval outcomes—without relying on reference queries.
- Our method doubles recall achieved by previous SOTA on real search engines, outperforms GPT-40 and Claude-3.5 in evidenceseeking and SQL tasks, and classic IR benchmarks.
- Unlike distillation-based & SFT methods, DeepRetrieval learns adaptive reasoning strategies, demonstrating strong generalization and efficiency with just 3B parameters.
- This work highlights RL as a powerful and general solution for bridging the query-retrieval gap in real-world information access.

Paper: <u>https://arxiv.org/pdf/2503.00223</u> Code: <u>https://github.com/pat-jj/DeepRetrieval</u> Models: <u>https://huggingface.co/DeepRetrieval</u>

Thank you!

Patrick Jiang