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• Information retrieval systems often struggle with the semantic gap between user queries and 

relevant documents. 

• Query Augmentation bridges this gap by reformulating queries to better match relevant content:
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Previous Approaches (Distillation from Larger LLMs):

• Costly and highly rely on the quality of reference query (often suboptimal)
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Previous Approaches (Distillation from Larger LLMs):

 Limited Exploration:

SFT models can’t explore beyond fixed training data, 

making them prone to local minima and less 

adaptable to new tasks.

 Dependence on Reference Queries:

Distillation relies on expensive, manually curated 

reference queries (often from large LLMs like GPT-

4o). These queries may not be optimal for the 

target retrieval task.

 Indirect Optimization:

Distilled models learn to mimic query form—not 

retrieval effectiveness. They optimize for similarity, 

not metrics like Recall@K or NDCG.

 Cost and Bias:

Generating supervision data is costly and time-

consuming. Distilled models may inherit biases 

from the teacher, limiting generalization.
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Can we skip reference queries and still train an effective query generator?

Yes, DeepSeek-R1-Zero1 was trained in this way.

[1] Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., ... & He, Y. (2025). Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.
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• Traditional LLM training typically relies heavily on supervised fine-tuning with human-labeled data

• DeepSeek R1-Zero starts with just the base model and applies RL directly, learning 

reasoning/generation capabilities from scratch through trial-and-error
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Please augment the following 
user query to retrieve the 
most relevant documents: 

{User’s Query}

LLM
<think>
Let’s augment this query.
…
</think>

<answer>
Here’s the query:
{Augmented Query}
</answer>

Final Reward
Format Reward:         /
{Retrieval Reward}

update

Input

Output

Reasoning

Retrieval 
(Search)

Retrieval Reward 
Computation

True Context

Retrieved Context

DeepRetrieval learns to generate queries through trial-and-error, guided by real retrieval 

outcomes from live systems.
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DeepRetrieval Distillation-Based Methods

Training Signal  Direct reward from retrieval outcome  Matches teacher or annotated reference queries

Supervision 

Needed
 No supervision or labeled queries  Requires supervised data or teacher outputs

Adaptability
 Retriever-agnostic and domain-

flexible
 Needs new data or distillation per domain

Cost Efficiency  Low-cost (no human-in-the-loop)
 High-cost due to human annotation and large 

LLMs

Model Size 

Efficiency
 Strong results with small (3B) models  Typically relies on larger teacher models
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We tested DeepRetrieval on four retrieval tasks:

Task Description Retriever Type Metric Examples

1. Literature Search Retrieve scientific papers Real Search Engines Recall@3K PubMed, ClinicalTrials.gov

2. Evidence-Seeking
Retrieve answer-containing 

passages for open QA
Sparse (BM25) Hits@1/5/20 (H@N)

Natural Questions, TriviaQA, 

SQuAD

3. Classic IR

Improve performance on 

standard sparse/dense 
retrieval benchmarks

BM25 / Dense NDCG@10
MS MARCO, FEVER, 

HotpotQA, SciFact

4. SQL Search
Generate SQL queries to 

retrieve structured records
Structured SQL backend Execution Accuracy Spider, BIRD
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Literature Search on Real Search Engines

Publication Clinical Trials

DeepRetrieval-3B’s 65.07% vs. Previous SOTA (SFT)’s 24.68% on PubMed Search API

DeepRetrieval-3B’s 63.18% vs. Previous SOTA (SFT)’s 32.11% on ClinicalTrials.gov Search API

Task Definition: Search scientific papers/trials with search engines

Metric: Recall@3K (How many ground truth papers are retrieved among the top-3k retrieved documents?)
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Task Definition: Given a question, looking for the answer span in the retrieved documents.

Metric: Hits@N (Is there an answer span in the top-N retrieved documents?)

1. DeepRetrieval-3B achieved comparable 

performance with GPT-4o and Claude-3.5 

on evidence-seeking.

2. Reasoning matters for DeepRetrieval

For this task, what if the model inject its own 

knowledge into the query, i.e., put the answer 

into the query?
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Knowledge Injection Study for Evidence-Seeking Retrieval

• DeepRetrieval learns adaptive injection strategies, injecting more knowledge where helpful (e.g., 41.5% in 

TriviaQA), and minimizing injection where unnecessary (e.g., 4.6% in SQuAD).

• This study underscores the importance of dataset-specific strategies in query generation and highlights the adaptive 

reasoning capability learned via RL
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We use BM25 as the base sparse retriever for all the datasets, while using E5-Large as the base dense retriever for SciFact, use BGE-base-en-v1.5 for HotpotQA, 

FEVER, NFCorpus, and MS-Beir, and use vanilla Contriever for MS MARCO domain-specific (MS-H: health, MS-S: science, MS-T: technology) subsets.

Task Definition: Given a query, search relevant documents.

Metric: NDCG@10 (rewards retrieving relevant documents early in the top 10; higher is better. )



Experiments – Task 3: Classic IR

15

Task Definition: Given a query, search relevant documents.

Metric: NDCG@10 (rewards retrieving relevant documents early in the top 10; higher is better. )

Findings:

(1) DeepRetrieval is more effective to boost 

sparse retrieval performance

(2) When dense retrievers have already learned 

data distribution in the training set, the room 

left with query-rewriting is limited

(3) For unseen data (MS-H, MS-S, MS-T), 

DeepRetrieval+BM25 outperforms dense 

retriever and its combination w/ DeepRetrieval, 

with 34x faster retrieval speed
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Task Definition: Given a natural language question, generate a SQL query to retrieve 

the correct answer from a database.

Metric: Execution Accuracy — percentage of generated SQL queries that produce the 

correct answer when executed.

Findings:

(1) DeepRetrieval outperforms GPT-4o and Claude-3.5 on Text-to-SQL task

(2) Coder (base model pre-trained on code) performs better

(3) RL from scratch outperforms SFT

(4) “Cold start” works better for general-purpose base model (Qwen-2.5)

(5) Reasoning works better for coder model (Qwen2.5-Coder)
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Why RL >>> SFT?

• Direct Optimization: RL optimizes retrieval metrics directly rather than mimicking reference queries

• Exploration Advantage: RL explores query space through trial-and-error, discovering patterns human 

experts might miss 

 For example:

• Task Adaptability: RL performs consistently well across scenarios with varying levels of ground truth 

availability

They are also complementary : SFT can provide strong initialization for RL when model lacks domain 

capabilities (SQL coding)

((DDAVP) AND (Perioperative 
Procedures OR Blood Transfusion OR 
Desmopressin OR Anticoagulant)) AND 
(Randomized Controlled Trial)

P: Patients undergoing perioperative 
procedures, I: Desmopressin 
administration, C: Standard care without 
desmopressin, O: Minimising perioperative 
allogeneic blood transfusion

DeepRetrieval
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Think / Query Length Analysis

Reasoning Evolution: Unlike tasks (e.g. math) requiring long reasoning chains, 

reasoning length decreases over time as models internalize effective strategies

• Reasoning/Think in DeepRetrieval acts as a strategy seeker

Different Strategies leading to similar performance: Models discover distinct 

approaches (Qwen favors longer queries, LLaMA produces shorter ones), yet 

achieve comparable recall (~65%) - demonstrating multiple valid paths to high 

performance

Without Reasoning: Models fall into local minima of query verbosity (yellow 

line) with lower performance (~52% vs ~65% recall)



Discussions

19

Think / Query Length Analysis
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• DeepRetrieval introduces a new paradigm: training LLMs for query 

generation via direct reinforcement learning from real retrieval 

outcomes—without relying on reference queries.

• Our method doubles recall achieved by previous SOTA on real 

search engines, outperforms GPT-4o and Claude-3.5 in evidence-

seeking and SQL tasks, and classic IR benchmarks.

• Unlike distillation-based & SFT methods, DeepRetrieval learns adaptive 

reasoning strategies, demonstrating strong generalization and 

efficiency with just 3B parameters.

• This work highlights RL as a powerful and general solution for bridging 

the query-retrieval gap in real-world information access.

Paper: https://arxiv.org/pdf/2503.00223

Code: https://github.com/pat-jj/DeepRetrieval

Models: https://huggingface.co/DeepRetrieval 

Please augment the following 
user query to retrieve the 
most relevant documents: 

{User’s Query}

LLM
<think>
Let’s augment this query.
…
</think>

<answer>
Here’s the query:
{Augmented Query}
</answer>

Final Reward
Format Reward:         /
{Retrieval Reward}

update

Input

Output

Reasoning

Retrieval 
(Search)

Retrieval Reward 
Computation

True Context

Retrieved Context

https://arxiv.org/pdf/2503.00223
https://github.com/pat-jj/DeepRetrieval
https://huggingface.co/DeepRetrieval
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Patrick Jiang
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